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Effective communication is a foundational aspect of collaboration and teaming. Good com-

munication enables and sustains the shared situational awareness necessary for adaptation and

coordination during uncertain situations in human-robot teaming, and helps identify and remedy

potential misunderstandings caused by mismatched expectations or behavior. Given the opaque

nature of decision-making in autonomous systems and robots, it is crucial that these agents can

explain their decision-making rationale to both experts and novices for safe and trustworthy deploy-

ment in real-world applications. Furthermore, for autonomous agents to be effective and capable

in human-robot teams, they should not only explain their decisions but also have the capacity to

coach and convince their human collaborators.

I argue that by leveraging multiple modalities of communication (such as visual and natural

language), we can improve the safety and capability of human-robot teams, enabling appropri-

ate trust, compliance, and reliance, especially in safety-critical, partially observable situations.

Therefore, this doctoral thesis focuses on improving human-machine multimodal communication

by employing explainable AI techniques to empower autonomous agents to: 1) communicate in-

sights into their capabilities and limitations to human collaborators, 2) coach and influence human

teammates’ behavior during joint task execution, and 3) successfully convince and mediate trust

in human-robot interactions.
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Chapter 1

Introduction

\The mind is its own place, and in itself can make a heaven of hell, a hell of heaven."
| John Milton, Paradise Lost

1.1 Background and Motivation

As autonomous systems and robots become increasingly capable decision-makers, explainable

AI (xAI) has emerged as a necessary component for deploying safe autonomous systems. xAI is

a sub�eld of arti�cial intelligence and machine learning that focuses on developing methods that

enable human users to comprehend, trust, and e�ectively interact with autonomous systems by

providing clear, understandable, and transparent explanations of their decision-making processes

[1, 2]. The goal of xAI is to make machine learning algorithms and their outputs interpretable,

ensuring that users can understand and trust how and why speci�c decisions or recommendations

are made [3]. Most modern machine learning algorithms (e.g., reinforcement learning and deep

learning) are considered \black box" models. Their decision-making processes are highly complex

(e.g., GPT-3.5, one of the earlier versions of ChatGPT, has 6.7 billion parameters [4]) and are

understood only based on their inputs and outputs, not their internal workings [5].

Explainable AI can help bridge the gap between human and autonomous agents by making

complex models more understandable. This transparency facilitates faster debugging and failure

recovery, builds trust, and enhances collaboration, ultimately improving overall team performance

[6, 7, 8]. xAI is also crucial for meeting legal requirements. Regulations such as the General Data

Protection Regulation (GDPR) in the European Union, implemented in 2018, mandate trans-
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parency and accountability in automated decision-making processes [9]. Similarly, the proposed

Algorithmic Accountability Act in the United States, introduced in 2022, seeks to ensure that AI

systems are fair and unbiased, requiring impact assessments and explanations for decisions made

by AI [10, 11].

Explainability and Aligning in Human-Robot Teaming. In the context of robotics,

explainability and transparency are crucial for the safe and trustworthy deployment of autonomous

systems in the real world, especially when they are working with or around people [12]. Tradition-

ally, robots have operated separately from humans. Even in potentially collaborative environments

like manufacturing, industrial robots most often function in physically separated sections of the

assembly oor. The primary reason for this separation is the need for safety assurances; it is essen-

tial to be certain that these machines will operate as intended, without causing harm to humans,

their environment, or even themselves [13, 14]. Additionally, robots must be able to plan for un-

certainty and communicate their future behavior and decision-making rationale to people so they

can appropriately trust and rely on them for safe deployment into the real world.

One critical aspect of safe and e�ective collaboration between teammates is maintaining

awareness of the collaborator's mental model, enabling agents to reason about what their teammate

is likely to do or need [12, 15]. Humans tend to be adept at this task, able to communicate plans

and preferences in ways that are easily understandable by their teammates [16]. Robots, however,

do not have the bene�t of human intuition. They must instead rely on explicit mathematical

formalisms to approximate the mental states of human teammates and plan accordingly [17]. Recent

research in explainability and human-agent teaming has leveraged xAI for knowledge sharing and

expectation matching to achieve uent collaboration and improve shared awareness [18, 19, 20, 21].

Explanations enhance transparency and help synchronize expectations between human and robot

teams [12, 22]. For robots and autonomous agents to e�ectively collaborate with humans in high-

stakes applications (e.g., autonomous driving), insights into these autonomous systems' capabilities

and their limitations are required [23, 24, 25]. Therefore, one research thrust of this thesis focuses on

developing novel explainable AI techniques to provide those insights, enabling more uent teaming
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and agent-to-human communication.

Explanations and Communication for Robotic Coaching. Explanations and com-

munication can be leveraged to empower autonomous agents to manipulate, coach, and adapt their

teammates' behavior, particularly during joint task execution. The capacity to coach is crucial

in applications such as robotic tutors, learning assistants, healthcare for the elderly, and rehabil-

itation therapy [23, 26, 27]. It is also powerful in human teaming scenarios such as search and

rescue, enabling agents to perform functions like robotic coaching and intervening when individuals

are about to undertake suboptimal actions or actions that could lead to failure due to uncertainty

or sudden environmental changes. To enable robotic coaching of humans, agents should not only

be able to communicate or explain but also be pro�cient in mediating any potential misunder-

standings and justifying their rationale for recommendations. Consequently, this facilitates the

explicit reconciliation of mental model divergences, informs collaborators as requirements change,

and enhances overall collaboration e�ectiveness. Consider the problem of air tra�c control, where

a human air tra�c controller oversees the movement of multiple aircraft in a busy airspace. If the

controller gives a sub-optimal routing instruction that could lead to potential conicts or ine�cient

ight paths, a system capable of generating human-interpretable feedback indicating the potential

conict and providing a justifying explanation would be far more useful than one that could not.

Such a capability has the potential to improve both the controller's situational awareness and the

overall safety and e�ciency of air tra�c management.

Donald Michie, one of the forefathers of Arti�cial Intelligence at Bletchley Park, outlined

criteria for machine learning in his seminal 1988 work: weak, strong, and ultra-strong* . Michie

aimed to establish operational criteria that assess not only the predictive accuracy of machine

learning systems but also the comprehensibility of the knowledge they acquire. Many of today's

systems with learned control policies continue to satisfy only Michie's weak criterion, meaning

* In 1980, Donald Michie proposed three criteria to evaluate machine learning systems [28]:
1. Weak Criterion : A system increases performance on unseen data by learning from sample data.
2. Strong Criterion : The system contains the weak criterion plus the ability to communicate its learned hypotheses
function in symbolic form.
3. Ultra-strong Criterion : The system contains the strong criterion plus the ability to teach a user the learned
hypothesis function.
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they still cannot communicate their rationale, despite the recognition of explainability as crucial

for the safe and transparent deployment of autonomous systems. This underscores the need for

developing xAI techniques that not only explain their rationale but are also adept at teaching

their understanding to users, thereby satisfying the ultra-strong criterion. Therefore, the second

research thrust of this thesis focuses on enabling human coaching by leveraging explanations and

communication.

Human-Centered Explainable AI. Research in xAI has primarily targeted algorithm

transparency for developers, aiding in model debugging and behavior prediction [7, 29]. These

approaches are fundamentally limiting to non-expert stakeholders and end-users who interact with

the models or products regularly, and thus directly experience the consequences of failures [3, 30].

For example, consider a healthcare application where a medical diagnosis system uses deep

learning to identify diseases from medical images. While developers can use xAI methods to under-

stand how the model makes its predictions and improve it, end users|doctors and patients|need

simpler, more social explanations, such as those in natural language, to trust the system and make

informed decisions in critical medical scenarios [31, 32]. Similarly, in robotics, imagine a collabora-

tive manufacturing environment where robots work alongside human workers. If a robot's behavior

deviates unexpectedly, xAI techniques can provide explanations for its actions, helping workers

understand whether the deviation was due to a safety protocol, a sensor error, or a change in

task parameters. This understanding not only builds trust but also enables workers to respond

appropriately and maintain e�cient and safe operations.

Therefore, one of the focuses of this thesis dissertation is generating multimodal explanations

that are understandable for both experts and non-experts, drawing insights from everyday human-

centric explanations extensively studied in social science and psychology literature[31, 32, 33].

Another challenge in human-machine collaboration scenarios, such as decision support sys-

tems, is that people are governed by psychological biases, leading to over-trust (over-reliance) or

under-trust, resulting in suboptimal decisions [34, 35, 36, 37]. Over-trust can cause performance

failures due to inadequate monitoring and workload delegation, such as neglecting to monitor
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tra�c when using driver assistance systems in autonomous driving scenarios. Conversely, under-

trust occurs when users are overly skeptical of autonomous systems, leading to underutilization of

their capabilities. This skepticism can result in users frequently overriding or ignoring the robots'

recommendations, causing missed opportunities for improved e�ciency and decision-making. We

argue that the goal of these systems should be to appropriately calibrate trust, ensuring that trust

matches system capabilities and promotes appropriate use. Therefore, this thesis examines how we

can leverage behavioral insights from cognitive psychology and the human factors community, com-

bined with multimodal explanations, to foster appropriate trust levels and enhance human-machine

collaboration.

Research Themes. With this in mind, I pursue three interconnected research themes at the

intersection of xAI and human-robot interaction:

RT1: Characterizing and generating multimodal explanations for autonomous agents to e�ectively

communicate their decision-making rationales.

RT2: Operationalizing a framework for explainable robotic coaching within human-robot teaming

scenarios, aiming to enable mental model reconciliation through e�ective communication.

RT3: Characterizing and evaluating the role of robot justi�cation in mediating trust and inuence

within human-machine teams to achieve mental model alignment.

1.2 Thesis Statement

This dissertation argues that to be e�ective teammates, robots should be capable of ex-

plaining, coaching, and convincing via multimodal communication to build appropriate trust and

reliance. It investigates di�erent characterizations of generating multimodal explanations (visual

and natural language) for autonomous agents to communicate their decision-making rationale. Fur-

thermore, robots should not only communicate their rationale but also coach these aspects to their

human teammates to improve task understanding and performance, satisfying ultra-strong criteria
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[28]. Therefore, this dissertation also explores operationalizing explainable robot coaching within

human-robot teaming scenarios by e�ectively modeling and reconciling mental model divergences

using explanations, thereby building trust and transparency. Finally, the dissertation examines

the role of robot justi�cation in mediating trust and inuence, particularly the psychological ef-

fects such as compliance and reliance, based on di�erent justi�cation characteristics like modality,

frequency, and content.

1.3 Contributions

The key technical contributions of this thesis dissertation are as follows:

(1) Reward Augmentation and Repair through Explanation (RARE): A novel frame-

work for understanding and correcting an agent's decision-making process, which estimates

a human's understanding of a domain's reward function through their behavior and provides

corrective explanations to repair detected issues. This framework was validated through a

human subjects study, showcasing the e�ectiveness of justi�cation in convincing people.

(2) Single-shot Policy Elicitation for Augmenting Rewards (SPEAR): A novel se-

quential optimization algorithm uses semantic explanations derived from combinations of

planning predicates to augment a human agent's reward function. This process, de�ned

as policy elicitation, drives the agent's actions (policy) to exhibit more optimal behavior

and reconciles disparities in their reward function. We validated this policy elicitation

framework through a series of human subjects studies, demonstrating that reward-based

explanations improve task performance and promote active thinking patterns.

(3) Plan Augmentation and Repair through SEmantic Constraints (PARSEC): A

human-in-the-loop algorithm that facilitates constraint annotation by novice users using

natural language for motion planning problems through a novel hierarchical semantic pro-

cess for robot skill learning and repair.
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(4) AR-based Visual Guidance for Multi-agent Reinforcement Learning: MARS

(Min-entropy Algorithm for Robot-supplied Suggestions), a framework for generating aug-

mented reality-based visual guidance to communicate environmental uncertainty and pro-

vide actionable recommendations in joint human-robot tasks. This framework was empiri-

cally validated through a human subjects study, showcasing the e�ectiveness of these visual

explanations in improving trust and enabling active engagement in the task.

(5) Mathematical Framework for Justi�cation Timing: A novel mathematical frame-

work, informed by the value of information theory, to decide when a robot collaborator

should justify its recommendation to a human teammate. This framework was validated

by an expert study, determining the utility of justi�cation timing strategies.

(6) Characterization and Validation of Justi�cation Types: A methodological char-

acterization of four di�erent types of justi�cation, derived from established features in

xAI literature, along with a validation and analysis of these justi�cation types via human

subjects study.

1.4 Outline

This document is divided into six chapters. The chapters are described below:

(1) Chapter 2 begins with a review of the literature on aligning mental models in human-robot

teaming, focusing primarily on technical methods for mental modeling and aligning mental

models within the context of explainable AI and human-robot interaction.

(2) Chapter 3 focuses on an explanation-based human reward coaching framework. Speci�cally,

it explores two coaching frameworks: correcting one action at a time and policy coaching

(i.e., improving overall behavior). This chapter also discusses how to generate natural

language explanations to enhance human teammates' task understanding and assesses the

bene�ts in human-robot interaction scenarios, particularly in the context of intervention

and building appropriate trust.
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(3) Chapter 4 examines how natural language communication can be used by novice users to

quickly and e�ectively select constraints to correct faulty robot behavior or adapt robotic

skills to human preferences and personalization.

(4) Chapters 5 and 6 investigate multimodal explanations for decision support systems and

their role in mental model alignment and justi�cation. In Chapter 5, we present a multi-

agent collaborative planning and decision support system for human teammates that lever-

ages visual explanations to inuence human thought patterns for compliance and reliance.

Chapter 6 looks into the utility of justi�cations in human-machine teaming scenarios, ex-

ploring when and what should be included in them. It presents a framework that determines

the timing and evaluates what should go within justi�cations based on context, utilizing

both visual and natural language explanations.

(5) Lastly, Chapter 7 concludes with a summary of the contributions of these works and a

discussion of future research avenues enabled by these contributions.



Chapter 2

Mental Modeling in Human-Robot Teaming

\Madness is to think of too many things in succession too fast, or of one thing too exclusively."

| Voltaire, Candide

2.1 Introduction

This chapter focuses on characterizing recent work in developing formalisms formental mod-

els in human-robot teaming scenarios. As robots become increasingly prevalent and capable, the

complexity of roles and responsibilities assigned to them as well as our expectations for them will in-

crease in kind. For these autonomous systems to operate safely and e�ciently in human-populated

environments, they will need to cooperate and coordinate with human teammates. Mental models

provide a formal mechanism for achieving uent and e�ective teamwork during human-robot inter-

action by enabling awareness between teammates and allowing for coordinated action. Much recent

research in human-robot interaction has made use of standardized and formalized mental modeling

techniques to great e�ect, allowing for a wider breadth of scenarios in which a robotic agent can

act as an e�ective and trustworthy teammate. This chapter provides a structured overview of men-

tal model theory and methodology as applied to human-robot teaming. It also examines mental

model alignment in human-machine teaming within the context of explainable AI techniques and

communication. The chapter also discusses evaluation methods and metrics for various aspects

of mental modeling during human-robot interaction, along with recent emerging applications and

open challenges in the �eld.
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2.2 Mental Models

Mental models, also referred to asmental representations in psychology, are organized

knowledge structures that allow individuals to interact with their environment [38]. Although the

mental model has been used as an explanatory mechanism in a variety of disciplines over the years,

its root can be traced back to twentieth-century psychology and epistemology. In 1943, Kenneth

Craik posited in his seminal work that the mind provides a \small-scale model" of reality, enabling

us to predict events [39]. In essence, mental models serve the crucial purpose of helping people

to describe, explain, and predict events in their environment [40]. Since then, mental models

have gained popularity in the human factors community for their e�ectiveness in eliciting and

strengthening teamwork uency for complex task execution, such as in tactical military operations

[15, 41]. Inspired by this success, several architectures for HRI have since replicated this uency

and teamwork by developing mental modeling techniques for robotic agents that operate in human-

populated environments.

In HRI literature, the concept of mental modeling is often conated or used interchangeably

with another important concept in developmental psychology: Theory of Mind (ToM). To be

capable of ToM simply denotes an ability to attribute thought, desires, and intentions to others [42].

Theory of Mind is crucial for everyday human social interactions (e.g., for analyzing, judging, and

inferring others' behaviors), with evidence that typically developing humans exhibit this capability

by the age of 5 [43]. Accordingly, several architectures for human-robot teaming in HRI incorporate

aspects of a ToM for other agents [26, 44, 45, 46, 47, 48].

In general, mental models and ToM go hand in hand during human-robot interaction, as a

robot modeling other agents is analogous to having an agent with a ToM capacity. Furthermore,

it leads to an interesting phenomenon during human-robot teaming as humans also form a ToM

directed at their robot teammate. Therefore, mental modeling enables a phenomenon where a

robot may form a belief over a human's mental model of the robot. This meta modeling is de�ned

as second-order mental modeling which enables robots to estimate how a human's mental model is
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a�ected by its own behavior [49]. Thus, current work in mental modeling for human-robot teaming

can be broadly classi�ed into �rst-order (or standard) or second-order mental models.

We can see how e�ective mental models correlate with team functioning: team members

predict what their teammates will do or need, facilitating the coordination of actions. Prior studies

in the human factors community demonstrate a positive relationship between team performance

and similarity between the mental models of team members [40, 50, 51]. This implies that shared

understanding of the team is a crucial factor of e�ective team performance (i.e., team members

should have a shared mental model). Shared Mental Model (SMM) theory states that team members

should hold compatible mental models that lead to common expectations for shared task execution

to avoid failure [52, 53]. To summarise, if a mental model helps in describing, explaining, and

predicting the behavior of a system, a shared mental model serves the purpose of describing,

explaining, and predicting the behavior of a team.

2.3 Mental Models in Human-Robot Teaming

Teamwork is the collaborative e�ect of a group's e�ort toward achieving a common goal[54].

In the mental modeling literature, collaborative tasks are often broken up into smaller submodels

representing components of e�ective teamwork, such as models of task procedures and strategies,

models of inter-member interaction and information ow, or models of individual team member

skill and preferences [40].

These various types of mental models and their incorporation of shared knowledge in teams

help in achieving characteristic traits such as uent behavior between teammates, quick adap-

tation to changing task demands, trusting collaborators with roles and responsibilities, e�ective

communication, and decision making in time-critical applications. Several studies in human-robot

collaboration have attempted to elicit these positive qualities through the use of mental models.

In this section, we present a systematic characterization of desirable traits which can be achieved

through mental modeling in human-robot teaming:
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ˆ Fluent behavior : Fluency, as de�ned by Ho�man, is a \coordinated meshing of joint

activities between members of a well-synchronized team" [55]. This quality of interaction,

collaborative uency, intuitively means human and robot are well-synchronized in timing,

they can alter plans and actions appropriately, and often without much communication.

ˆ Adaptability : During collaboration, plans change, and team members (both human and

robot) should be able to alter their plans and actions appropriately and dynamically as

needed. Previous studies show that shared or common mental models can be leveraged for

changing task demands for quick adaptation in a team [52, 56].

ˆ Trust building : Trust is a critical element for the success of a team. In human-robot

interaction, studies show that people trust a collaborative robot when they can discern its

role and responsibility, have con�dence in its capabilities, and possess an accurate under-

standing of its decision-making process (a shared mental model) [6, 24].

ˆ E�ective communication : Information exchange, either verbal or non verbal, is pivotal

for collaboration. A collaborative agent can leverage mental models to warn its human

teammate about potential failures or ask for help when it is unable to complete a task

[20, 57].

ˆ Explainability : Knowledge sharing and expectation matching also have importance for

behavior explainability [58, 59, 60]. The recent surge in popularity of explainable AI (xAI)

has shown the crucial importance of agents' ability to explain their decision-making process,

leading to improved transparency, trust, and team performance.

2.4 Mental Model Methodologies

In this section, we discuss successful methods for mental modeling in human-robot teaming

contexts. We organize the literature into three categories: �rst-order (or standard) mental models,

second-order mental models, and shared mental models.
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2.4.1 First-order Mental Models

In �rst-order mental models, robots model the behavior of human collaborators to infer their

beliefs, intentions, and goals, for the purpose of predicting their actions. Usually, such modeling

can be functionally broken down into two steps which a framework must resolve: 1) the human's

reward function (which motivates the human's behavior in the world), and 2) a planning algorithm

which connects that inferred reward function to robot behavior [61].

One of the simplest approaches is based on the principle of rationality [62, 63]: the expectation

that agents will plan approximately rationally to achieve their goals, given their beliefs about the

world (i.e., they will take actions that maximize their expected reward). One way to infer a

human's reward function is to observe their behavior through inverse reinforcement learning (IRL).

For example, the widely used maximum entropy IRL formulation optimizes a model to �t a reward

function that incentivizes a human demonstrator's actions exponentially more than unobserved

actions [64, 65].

A similar approach to inferring a human's reward function is through inverse planning. Baker

et al. propose a computational framework based on Bayesian inverse planning for modeling human

action understanding. They modeled human decision making as rational probabilistic planning

with Markov decision processes (MDPs), and inverted this relation using Bayes' rule to infer agents'

beliefs and goals from their actions (running the principle of rationality in reverse) [66, 67]. They

were able to extend this method to a Bayesian model of Theory of Mind (BToM), which provides

the predictive model of belief and desire-dependent action (the ToM capacity of the collaborative

human) as a Partially Observable Markov Decision Process (POMDP) [68], and reconstructs an

agent's joint belief state and reward function using Bayesian inference based on observations of the

agent's behavior [69, 70].

From a planning and decision-making point of view, the noisy rational choice model (also

known as Boltzmann rational) [71, 72] is a popular method in robotics where actions or trajectories

are chosen in proportion to their exponentiated reward. Here, it is assumed that the collaborative
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agent has access to some underlying human reward function (usually inferred through IRL or inverse

planning approaches). The human is modelled to act rationally with the highest probability, but

with a non-zero probability of behaving sub-optimally [49, 73, 74, 75, 76].

Humans frequently deviate from rational behavior due to speci�c biases such as time pres-

sures, loss aversion, and the like [36]. Furthermore, they are limited in cognitive capacity, which

leads to forgetfulness, limited planning horizons, and false beliefs. Some recent methods attempt

to introduce these inconsistencies to the rational model assumption [77]. Nikolaidis et al. gave

a Bounded-Memory Adaptation Model, which models humans as boundedly rational, subject to

memory and recency constraints, through a probabilistic �nite-state controller that captures human

adaptive behaviors [48]. Kwon et al. used a risk-aware human model from behavioral economics

(Cumulative Prospect Theory) for modeling loss aversion behaviors of humans under risk and

uncertainty [78].

Another recent approach for human behavior modeling is the Reward Augmentation and

Repair through Explanation (RARE) framework for estimating and improving a collaborators' task

understanding. Here, Tabrez et al. provided a computational framework for human reward function

estimation via a set of possible Hidden Markov Models (HMMs) [20], representing a task's reward

function and partially de�cient variants (e.g., missing reward information). The collaborative agent

must infer the most likely HMM for explaining the teammates' behavior, which in turn indicates

a plausible underlying reward function for explaining the human's actions. For more details on

inferring human intent and predicting behavior in human-robot collaboration scenarios, we direct

readers to the recent comprehensive survey by Ho�man et al. [17].

2.4.2 Second-order Mental Models

The concept of a second-order mental model is related to a recursive type of reasoning modeled

by game theorists (\I believe that you believe that I believe...") which can be extended to a possibly

in�nite reasoning process [79, 80]. The second-order mental model is one step deeper in behavior

modeling (i.e., a robot forming a belief over a human's model of the robot). Second-order mental
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models enable robots to possess more predictable and explicable behavior, as the e�ects of their

actions on another agent's perception of them is included in the model.

Work by Huang et al. modeled humans as learning a robot's objective function over time by

observing its behavior using Bayesian IRL, an inversion of typical IRL paradigms where a robotic

agent attempts to infer human objective functions. To account for noisy learning behavior from

humans, the authors utilize approximate-inference models. Using this insight, an agent can plan

for actions that communicate to the human so as to be maximally informative, better enabling

humans to anticipate what the robot will do in novel situations [81].

Another approach that has shown promise is the Interactive POMDP (I-POMDP) framework,

which modi�es a traditional single-agent POMDP to include other agents by creating the notion of

an interactive state. An interactive state encapsulates both the environment state and the modeled

belief state attributed to another agent. Brooks and Sza�r use this I-POMDP framework [82]

for performing Bayesian inference of second-order mental models. They estimate the human's Q-

function (a function that helps determine the optimal action given an interactive state) through

IRL and use it to infer the human's belief state about the agent, by comparing it with the human's

actions assuming a Boltzmann rational behavior model [49].

2.4.3 Shared Mental Models

Shared mental models enable team members to draw on their own well-structured common

knowledge as a basis for selecting actions that are consistent and coordinated with those of their

teammates. They are strongly correlated to team performance [40]. In this section we focus on

methods employed for establishing a shared understanding between teammates.

One well-known approach in HRI inspired by SMM is work on human-robot cross-training by

Nikolaidis and Shah, which focuses on computing a robot policy aligned with human preference by

iteratively switching roles (between a human and a robot) to learn a shared plan for a collaborative

task [83]. Had�eld-Menell et al. approached SMM as a value alignment problem, ensuring that the

agents behave in alignment with human values. They utilize a cooperative inverse reinforcement
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learning (CIRL) formulation, where a robot maximizes a human teammate's unknown reward in

a cooperative, partial information game. They show that solutions within this formalism result in

active teaching and active learning behaviors [84].

Nikolaidis et al. also propose a game-theoretic model of a human's partial adaptation to a

robot teammate. This method assumes the robot agent knows a \true" utility function for the

team, and the human is following a best-response strategy to the robot action based on their

own, possibly incorrect reward function. The robot uses this model to decide optimally between

revealing information to the human and choosing the best action given the information that the

human currently has [56].

From these well-known models, we can see that establishing a shared mental model requires

communication between agents (except the cross-training method, where agents learn each other's

responsibilities by switching roles). We can separate these communication strategies into two cat-

egories: implicit (e.g., using movement or motion) and explicit (e.g., verbal explanations).

Implicit Communicative Models . A popular principle in motion planning for expressing in-

tention to a collaborator is the notion of legibility. Dragan et al. developed a formalism to math-

ematically de�ne and distinguish predictability (predicting a trajectory given a known goal) and

legibility (predicting a goal given an observed trajectory) of motion based on a rational action

assumption for the collaborative human [76]. Kulkarni et al. generate explicable robot behavior by

learning a regression model over plan distances and mapping them to a labeling scheme used by

a human observer, minimizing divergence between the robot's plan and the plan expected by the

human [85].

Another mode of implicit communication is through gesture and non-verbal expression. One

example of this is work by Lee et al. which uses a BToM approach to model dyadic storytelling

interactions [86]. They propose a method for a robot to inuence and infer the mental state of

a child while telling it a story, speci�cally estimating the child's degree of attentiveness towards

the robot. They model emotion expression as a joint process of estimating people's beliefs through
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inference inversion using a Dynamic Bayesian Network (DBN), and subsequently produce nonverbal

expressions (speaker cues) to a�ect those beliefs (attention state).

Explicit Communicative Models. Model reconciliation processes try to identify and resolve

the model di�erences of a collaborator through explanations, thereby establishing a shared mental

model. These processes lead to predictable behavior from the collaborative agent: a consequence of

explainability [87, 88, 89]. Briggs and Scheutz's recent work provides a formal framework to correct

false or missing beliefs of collaborators in a transparent and human-like manner by using adverbial

cues, adhering to Grice's maxims [90] of e�ective conversational communication (quality, quantity,

and relevance) [91]. Additional recent works also address the generation of these explanations,

seeking output that is optimal with respect to various quantitative and qualitative criteria including

selectivity, contrastiveness, and succinctness [18, 24, 31, 92, 93].

The major contributions of this thesis focus on expanding e�ective methods for mental model

reconciliation by leveraging multimodal communication. This work enables robots and autonomous

agents to generate real-time multimodal communication, such as natural language and AR-based

visual explanations, within partially observable and complex human-robot collaboration scenarios.

Additionally, it posits that di�erent modalities of communication have di�erent utilities depending

on the situation and argues for leveraging various modalities, augmented with novel interfaces, to

facilitate uent communication between human-robot teams.

2.5 Evaluation Methods

In this section, we discuss evaluation methods employed in human-robot teaming for each of

the desirable traits characterised in Section 2.2.

Team Fluency. Fluency, the metric for well synchronized meshing of joint actions between

humans and robots, is di�cult to measure and optimize in practice [94]. Ho�man and Breazeal

demonstrated that uency is a distinct construct to e�ciency through a user study involving an

anticipatory controller (when the robot anticipated participants' actions, task e�ciency was not

improved, but participants' sense of uency was increased) [95]. For team uency, there exist a
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number of validated subjective metric scales, as well as commonly used objective measures, such as

human and robot idle time, fraction of time spent concurrently working between agents, and delay

times between one agent �nishing a precursor task and another agent resuming that task [55].

Adaptability. Shared mental models o�er a mechanism for adaptability: quick, on the y

strategy adjustments by a team. As adaptability is intrinsically linked to performance, the majority

of measures are objective, often treating an adaptable controller as an independent variable to

compare alongside other controllers. Speci�c objective measures vary with the formulation used,

including mean reward accrued [56] and similarity metrics between human and robot notions of

\correct action sequence" in an evolving task [83]. Though there is a notable lack of validated

subjective measures for agent adaptability in HRI, many studies utilize subjective metric scales

for correlated measures such as team uency and trustworthiness [55, 83]. Nikolaidis et al. have

additionally showed that accounting for individual di�erences in humans' willingness to adapt to a

robot is positively correlated with trust [48].

Team Trust. Shared mental models promote trust and reliability by alleviating uncertainty

in roles, responsibilities, and capabilities while working in a team. Lee and See proposed a three di-

mensional model wherein trust is inuenced by a person's knowledge of what the robot is supposed

to do (purpose), how it functions (process), and its performance [96]. Based on previous studies,

robot performance is considered to be the most inuential factor for trust [97], likely due to the

importance of the agent's ability to meet expectations [98]. Other factors with positive relation-

ships to trust are minimizing system fault occurrence, system predictability, and transparency [99].

Most subjective measures for trust in HRI research are newly created to match individual study

requirements and lack the rigor in development and validation available in standardized scales from

the human factors community. Some well-known standardized scales with high potential for use in

HRI to evaluate a user's trust perception of an agent are the HRI Trust Scale, Dyadic Trust Scale

(DTS), and Robotic Social Attributes Scale (RoSAS) [99, 100].

E�ective Communication. Previous studies show that information exchange and e�ective

communication are important for building trust between team members. These communications



19

can be verbal (explicit) or nonverbal (implicit), as seen in Section 2.4. For explicit models, the fol-

lowing qualities have been found to be positively correlated with trust and teamwork: task-related

communications, contrastive explanations expressing model divergence, and user & context depen-

dent information (such as providing technical information to an expert, and accessible information

to a lay-user) [101, 102, 103]. For implicit models, such as those aimed at plan legibility and expli-

cability, self-reported understanding of a robotic agents' behavior or goal is a common evaluation

metric. Additionally, subjective metrics are often crafted for individual study requirements, aimed

at uncovering related traits like robot trustworthiness [76, 104, 105].

Explainability. Explainability deals with the understanding of the mechanisms by which a

robot operates and the ability to explain robots' behavior or underlying logic [20, 92]. Existing

works in explainable AI assess the e�ects of explainability through self-reported understanding of

the agent behavior, successful task completions, system faults, task completion time, number of

irreparable mistakes, and trust in automation. A survey by Walkotter et al. described three cate-

gories of measures for evaluating the e�ectiveness of explainable architectures (in descending order

of importance): 1) Trust (willingness of users to agree with robot decisions through a self-reported

scale), 2) Robustness (failure avoidance during the interaction), and 3) E�ciency (how quickly

tasks are completed) [106]. Two primary standardized scales for measuring explainability are from

Hofman et al. [107] and Silva et al. [108]. Silva et al. created a 30-question survey with items

intended to measure the simulatability, transparency, and usability of the agent's explanations. In

contrast, Ho�man et al. provided a standardized scales to evaluate the following concepts: (1)

the goodness of explanations, (2) whether users are satis�ed with explanations, (3) how well users

understand the AI systems, (4) how curiosity motivates the search for explanations, (5) whether

the user's trust and reliance on the AI are appropriate, and (6) how the human-XAI work system

performs.
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2.6 Emerging Fields & Discussion

Mental models have proven bene�cial for many human-robot teaming applications such as

assistive and healthcare robotics [109], social path planning and navigation [110], search and rescue

[111], and autonomous driving [78, 112]. In this section, we describe a selection of more recent

emerging use cases of mental models in HRI.

Though robots have been �xtures in industrial applications since the 1970s [113], the factory

of the future is likely to utilize robots for a much broader range of tasks, and in a much more

collaborative manner, enabled in part through the use of recent developments in mental models.

Many of these potential robot tasks intrinsically require operation in proximity to humans, raising

issues of safety and e�ciency. Recent work by Unhelkar et al. provides a framework for human-

aware task and motion planning in shared-environment manufacturing [114]. Additional research

in this area focuses on the problem of task scheduling for safely and e�ectively coordinating human

and robot agents in resource-constrained environments [19, 115]. Another recent development

has been towards the generation of supporting behavior for improving human collaborators' task

performance. These supportive behaviors do not directly contribute to a task but instead alleviate

the cognitive and kinematic burdens of a collaborating human (e.g., fetching tools or stabilizing

objects during assembly) [87, 116].

Furthermore, developments in augmented reality (AR) technology have shown promise for

industrial HRI applications. AR represents a novel modality of model communication for human-

robot collaboration, wherein details of a robot's plan or decision making process are visualized

and presented to a human teammate as holographic imagery overlaid onto the robot itself, viewed

through a head-mounted display. Notable work in this area has focused on visually conveying

robotic motion intent during human-robot teaming tasks with AR, both for robotic manufacturing

arms [117], and mobile robots [118], a technique which has been shown to broadly increase objective

measures of task accuracy and e�ciency, as well as subjective perceptions of robot transparency

and trustworthiness. Recent work has explored the inclusion of human-to-robot communication
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features on top of AR visualization, allowing human teammates to diagnose problems with and

modify a robot's plans or internal models during collaboration [119, 120, 121].

With the currently observed rate of increase in agents' capability for social behavior and

natural language generation, important problems surface regarding robot ethics and norms [122,

123], particularly in cases of policy elicitation (manipulating the human in the hopes of achieving

some greater good). These behaviors and capabilities induce perceptions of a moral and social

agency in robots similar to human standards of morality [124]. In reality, such actions/behaviors

do not embody any maliciousness but rather emerge due to necessity of situation and cooperation.

Some major challenges within this domain of problems include establishing moral norms during

collaboration, anticipating possible norm violations, attempting to prevent them while executing,

and if norms are eventually violated, taking mitigating actions to create transparency and user

awareness (such as providing justi�able explanations communicating the robot's decision-making

processes or capabilities) [125, 126].

Conclusion: As evidenced by the emerging application areas found within human-robot

teaming literature, mental models continue to be developed and applied in novel ways. Research

in human-robot interaction is rapidly evolving and expanding into new application areas, so this

list is far from exhaustive. In this chapter, we have provided a general overview of mental models

as applied to human-robot teaming: formalisms which have proven to be signi�cantly bene�cial for

uent collaboration and cooperation between teammates.

The next chapter of the thesis will focus on explainable robotic coaching to achieve mental

model alignment via natural language communication. Additionally, it will introduce the concept

of behavior manipulation, also known aspolicy elicitation . This refers to a class of problems

in human-robot teaming wherein an agent must guide humans towards an optimal policy, or away

from potential failure states, to successfully complete a task, either through implicit or explicit

communication [18, 20, 127].



Chapter 3

Communication and Explanations for Mental Model Reconciliation

via Reward Coaching

\We do not learn from experience... we learn from reecting on experience."

| John Dewey, Experience and Education

This chapter presents methodologies for enabling robots to e�ectively communicate their

decision-making rationale and operationalize robotic coaching using natural language explanations.

It is divided into two subchapters. The �rst presents a novel framework for explainable robotic

coaching and justi�cation, aiming to transform robots into competent coaches using explainable AI

to establish shared mental models among teammates. The second explores operationalizing robotic

coaching and introduces the concept of policy elicitation, where an autonomous agent guides humans

towards optimal policies or away from failure states through explicit communication to complete

tasks successfully.

3.1 Part 1: Framework for Robot Coaching and Justi�cation

In this subchapter, we present a novel mechanism for enabling an autonomous system to

detect model disparity between itself and a human collaborator, infer the source of the disagree-

ment within the model, evaluate potential consequences of this error, and �nally, provide human-

interpretable feedback to encourage model correction. This process e�ectively enables a robot to

provide a human with a policy update based on perceived model disparity, reducing the likelihood

of costly or dangerous failures during joint task execution. This chapter makes two contributions
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Figure 3.1: A participant plays a collaborative, color-based Sudoku variant with a robot during
a human subjects study evaluating the proposed framework. Using RARE, the robot is able to
identify, indicate, and explain potential failure modes of the game based on the human's predicted
understanding of the game's reward function.

at the intersection of explainable AI (xAI) and human-robot collaboration: 1) The Reward Aug-

mentation and Repair through Explanation (RARE) framework for estimating task understanding

and 2) A human subjects study illustrating the e�ectiveness of reward augmentation-based policy

repair in a complex collaborative task.

3.1.1 Introduction

Shared expectations are crucial for uent and safe teamwork. Establishing a common mental

model of a task is essential for human-robot collaboration, where each team member's skills and

knowledge may be combined to accomplish more than either could in isolation [128, 129, 130].

However, gaining insight into a collaborator's decision-making process during task execution can

be prohibitively di�cult, requiring the agent to have the capability to perform policy explanation

[92]. Further, taking corrective actions when a team member's comprehension of the task doesn't

match your own requires one to not just indicate a problem with the policy, but also to identify

the root cause of the incongruousness.

Within society, the roles and responsibilities being assigned to robots have grown increasingly

complex, reaching the boundaries of social integration. As this continues, it is reasonable to assume
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people will increasingly turn towards robots for completing important collaborative tasks with

real consequences of failure, such as search and rescue [131], housekeeping [132], and personal

assistance for the elderly [133, 134]. Providing these autonomous systems with the ability to identify

and explain potential failures or root causes of sub-optimal behavior during collaboration will be

essential to establishing appropriate levels of trust and reliance, while simultaneously improving

the task understanding and performance of human operators.

Consider the problem of resource allocation and asset tasking during a collaborative search

and rescue operation, where a human operator is commanding a eet of UAVs. If the human

provides a sub-optimal ight plan to an agent that provides poor coverage or exceeds its ight

range, a system that could both generate human-interpretable feedback indicating the potential

failure mode associated with the human's action and provide a justifying explanation would be far

more useful than one that could not. One might expect such a capability to improve both operator

task pro�ciency and failure rates.

To provide usable feedback for avoiding sub-optimal behaviors expected of a collaborator, we

introduce a framework that leverages the assumption that sub-optimal collaborator behavior is the

result of a misinformed understanding of the task rather than a problem with the collaborator's

rationality. In terms of a task de�ned through a Markov Decision Process, a human's poor action

selections should be attributable to a malformed reward function rather than a malformed policy

search algorithm. Building on this assumption, we believe a useful autonomous collaborator should

be able to 1) infer the most likely reward function used as a basis for a human's behaviors; 2)

identify the single most detrimental missing piece of the reward function; and 3) communicate this

back to the human as actionable information.

Toward this goal, we proposeReward Augmentation and Repair through Explanation

(RARE), a novel framework for improving human-robot collaboration through reward coaching.

RARE enables a robot to perform policy estimation during a collaborative task and o�er corrections

to a teammate's mental model during joint task execution. Our model estimates the most likely

reward function that explains the collaborator's behavior and provides a repairing explanation
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meant to enable the collaborator to update their reward function (task comprehension) and policy

(behavior). The two primary contributions of our work are:

ˆ Reward Augmentation and Repair through Explanation (RARE), a novel framework for un-

derstanding and correcting an agent's decision-making process, which estimates an agent's

understanding of a domain's reward function through their behavior and provides corrective

explanations to repair detected issues.

ˆ A human subjects study-based evaluation of RARE, showing both the technical feasibility

of the approach alongside empirical results illustrating its e�ectiveness during a complex

human-robot collaboration.

3.1.2 Background and Related Work

Much of the recent work in human-robot collaboration focuses on the common goal of making

robots a more acceptable, helpful, trustworthy, and functional part of our day-to-day life. Through-

out the established literature on human-robot collaboration, a majority of the attention has been

placed on providing capabilities to enable robots to adapt to their human collaborators, as opposed

to providing them with the tools needed to improve their human collaborators' behaviors for more

productive joint task execution.

One important trend in human-robot collaboration has been to improve robots' awareness of

human behavior [46, 135, 136]. These approaches primarily focus on enabling a robot to success-

fully adapt and perform tasks in the presence of humans rather than enabling them to collaborate

on equal footing with people. An e�ective approach to collaboration has been to enable the robot

estimate a human collaborator's belief [137] in order to plan `in their shoes', allowing for a better

understanding of their decision-making process and the factors inuencing their choices. Recent

work [138] has used Inverse Reinforcement Learning (IRL) [64] to infer human behavior given a

known goal. This work assumes the human holds an imperfect dynamics model for the domain,

and creates a shared control scheme to invisibly correct the disparity. As our approach attributes
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suboptimal behavior to a human's imperfect reward model, we �nd applicability to scenarios (such

as cognitive tasks) where shared control isn't a viable solution. Unfortunately, existing approaches

do not provide mechanisms where this perspective-taking can be used to improve a human's per-

formance and awareness on a task | rather, they mainly focus on mechanisms for allowing a robot

to adapt to a human. Work by Imai and Kaneko has provided a method to estimate a human's

false beliefs about a domain [139], with the intent to allow a robot to dispel said beliefs. Work by

Faulkner et al. models human belief to generate minimal communication [140], enabling a robot to

e�ectively ask for help from a human oracle, but does not investigate the reverse scenario of provid-

ing succinct help to a human agent. Implicit communication [141, 142] has also been investigated,

utilizing a robot's actions to provide actionable signal about its intent in collaborative scenarios.

One popular approach is to develop a \theory of mind" about one's collaborator [44, 45, 46, 47]

to e�ectively understand their knowledge state, goals, and beliefs. Work by Devin and Alami [44]

estimates the information the human might be missing to minimize the conveyance of unnecessary

information. In work by Leyzberg et al. [26], it is shown that personalized interactions lead to

better results, while in [48] trust is better preserved and maintained by performing actions that

respect a human's preferences.

During collaboration, interruptions are necessary for e�ective resynchronization of expecta-

tions. A great deal of work has been performed to study how [143] and when [144, 145, 146] an

autonomous agent should interrupt a teammate, how to personalize interruptions [147], and even

how interruptions can cause more errors in skill-based tasks [148].Our work addresses a cru-

cial technical gap as it not only estimates a collaborator's belief about the reward

function of their current task, but also infers the root cause for inaccuracies encoded

in said belief. Doing so provides the infrastructure needed for achieving the autonomous repair

of a collaborator's policy through explanations generated online during task execution intended to

illustrate and eliminate their root cause.
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3.1.3 A Framework for Reward Augmentation and Repair through Explanation

In this section we detail the theoretical framework of Reward Augmentation and Re-

pair through Explanation (RARE), wherein we utilize a Partially Observable Markov Decision

Process (POMDP) coupled with a family of Hidden Markov Models (HMMs) to infer and correct a

collaborator's task understanding during joint task execution. The central insight underpinning the

proposed method is that sub-optimal behaviors can be characterized as an incomplete or incorrect

belief about the reward function that speci�es the task being performed. By proposing potential

(erroneous) reward functions and evaluating the behavior of a virtual agent optimizing its policy

using these functions, our approach allows a robot to determine potential sources of misunder-

standing. Once a plausible reward function is discovered that explains the collaborator's behavior,

a repairing explanation can be generated and provided if the bene�t of correction outweighs the

consequences of ignoring it.

The framework can be characterized through three interconnected components responsible

for: 1) estimating a collaborator's comprehension of a domain's reward function; 2) determining

a policy for trading-o� between collaborative task execution and intervention; and 3) formulating

corrective explanations for reward function repair. For the remainder of the section, we focus on

the use case where the collaborating agent is a human and the agent employing RARE is a robot

jointly executing a task with them.

emphEstimation of Reward Comprehension

The core insight of RARE is that sub-optimal behavior is an indicator of a malformed reward

function being used by an otherwise rational actor. Thus, if it is possible to determine which

reward function the actor is using, it will be possible to identify problematic misconceptions that

may contribute to adverse behavior. As a result of this formulation, RARE necessarily assumes

that the agent implementing it has a complete speci�cation of the domain's true reward function.

To determine which components of the reward function the human collaborator is using,

RARE utilizes an HMM that incorporates both state features of the world (\world features") and
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(a) Task executions given two di�erent compre-
hensions of a gridworld domain's reward func-
tion.

(b) Incorporation of reward comprehension to in-
fer an agent's likely policy. State (2,2) indicates
partial knowledge of the domain reward function,
while (2',2') indicates full knowledge.

Figure 3.2: An example of two possible comprehensions of a domain's reward function. (a)-left:
The agent knows the true reward of the domain. (a)-right: The agent does not know about the
+100 reward, and behaves rationally given this malformed reward function. (b): Latent reward
comprehension variables di�erentiating state (2,2) and (2',2') provide a hypothesis to better explain
the agent's behavior, distinguishing between the scenarios represented in (a)-left and (a)-right.

latent state features that indicate knowledge of corresponding components of the domain's reward

function (\comprehension features"). In the example shown in Figure 3.2, the reward function has

two components: a +10 reward for entering the top left cell and a +100 reward for entering the top

right cell. The transition probabilities of a given state are directly computed from a policy trained

on the reward function speci�ed by the values of the comprehension features in the state.

We de�ne an augmented HMM (RARE-HMM) as the 7-tuple � = f S; O; M; �; A; B; � g that

estimates the likelihood of a state-action trajectory of an observed agent given a particular reward

function, where:

ˆ S = s0; s1; :::; sN is the �nite set of states the observed agent can be in.

ˆ O = o0; o1; :::; oM is the �nite set of possible observations, which correspond to the e�ects

of the action most immediately taken by the observed agent.

ˆ M is a Markov Decision Process (S; A; T; R) where S is the set of states in the MDP, A

is the set of actions an agent may take (A = O), T is a stochastic transition function

describing the action-based state transition dynamics of the model, andR is a reward
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function. Intuitively, M serves as a simulator for an agent in the task domain.

ˆ � is a policy trained to maximize reward in M .

ˆ A is a stochastic transition matrix, indicating the transition probability from state i to

state j:

A i;j = P(qt = sj jqt � 1 = si ), where 0 � i; j � N � 1, qt is the state at time t, and

8i 2 [0; N ];
P N

j =0 A i;j = 1. These probabilities are drawn directly from the composition of

the transition dynamics function M T and � . In other words, A represents the transition

likelihoods for an agent following policy � in M .

ˆ B is the stochastic observation emission matrix, indicating the probability of getting ob-

servation j at time t in state i : B i;j = P(vt = oj jqt = si ), where 0 � i � N , 0 � j � M ,

and vt is the observation emitted at time t. 8i 2 [0; N ];
P M

j =0 B i;j = 1.

ˆ � is the distribution describing the probability of starting in a particular state s 2 S such

that
P N

i =0 � i = 1.

Speci�cally, RARE utilizes a set of such HMMs �, where each member � 2 � uses a unique

reward function.

Collaborative Task Execution and Reward Repair.

For a given collaborative task, we de�ne the RARE agent's behaviors with a policy that solves an

augmented POMDP (RARE-POMDP) de�ned by the 6 tuple: ( S; A; T; R; 
 ; O) where:

ˆ S is the set of world states, consisting of both traditional featuresW (\world features") and

additional latent features C indicating the collaborator's understanding of the domain's re-

ward function (\comprehension features"). We formulate the set of comprehension features

as a vector of boolean variables indicating whether a particular component of the reward

function is known by the collaborator.
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ˆ A is the set of actions, consisting of both task-speci�c physical actions and reward repair-

speci�c social actions.

ˆ T is a transition function specifying state transitions as a function of action performed.

As RARE models a collaborative process, the dynamics introduced by the collaborator's

actions are also represented within this function, but are assumed to be known given known

comprehension features (i.e., if the agent's reward and policy are assumed to be known, its

behavior in a given state is also known).

ˆ R is a reward function specifying the value of executing an action in a given state.

ˆ 
 is the set of all possible observations. In a RARE-POMDP, each observation corresponds

to a particular RARE-HMM being the most likely explanation for a collaborator's behavior,

signaling the current state of their reward comprehension (i.e., their understanding of the

reward function).

ˆ O is a function describing observation emission probabilities for a given state. In RARE,

the emission function must be designed to encourage congruence between a state's com-

prehension features and the RARE-HMM with the corresponding reward function in 
.

In other words, a RARE-HMM has higher likelihood if its reward function contains the

components indicated by the current state's comprehension features.

The observation emission function presents an important design decision for implementing a

RARE-POMDP in a given domain. This function provides a link between the RARE-HMMs, each

representing an agent's expected behavior given a particular understanding of a reward function,

and the RARE-POMDP that is being solved to maximize the success of the collaboration. In
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Figure 3.3: Partial visualization of comprehension features for a gridworld domain with two reward
factors, one at each terminal reward state. Four variants ofs2 are shown, each indicating a di�erent
level of reward function awareness. Observing an agent transition from states2 to s3 provides
evidence suggesting they may not know about the larger rewardr2 in the top-right, but do know
about reward r1.

this work, we propose a softmax scoring function based on the likelihood of the collaborator's

action sequence for each potential RARE-HMM. For a given observed collaborator trajectoryT,

RARE-HMM/observation oi 2 
 and state s 2 S, we proposeO such that:

P(oi js) =
exp(P(T joi ))

P j 
 j
j =0 exp(P(Tjoj ))

Intuitively, this choice of O enforces that the RARE-POMDP's estimate for which reward

function the collaborator is following is proportional to the likelihood that their behavior was

informed by a policy derived from it. In applications where there is not a 1-to-1 correspondence

between available RARE-HMMs and potential reward functions (i.e., there are not 2n RARE-HMMs

de�ned for n reward function components), a more clever approach may be merited.
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The RARE-POMDP introduces the opportunity for the agent to make the decision to exe-

cute social actions aimed at better informing a collaborator about the domain's reward function.

In other words, the agent may execute a communicative action to explicitly inform a collaborator

about part of the reward function, directly changing the value of a latent comprehension feature

(e.g., the knowledge ofr2's existence in Figure 3.3). Even though such an action may not directly

advance the task toward completion, it may invariably result in higher net reward, as it can improve

the collaborator's policy by informing them of high reward states or harshly penalized states that

may lead to task failure.

Explanation Generation

The RARE framework allows an agent to estimate a collaborator's reward function during joint

task execution. This is a powerful piece of information, but it is far more useful in a collaborative

context when paired with actions that enable one to augment a collaborator's understanding of

the task. RARE uses this information to decide what and when to communicate, updating the

collaborator's reward function and policy. For our application domain, we propose an algorithm

(Algorithm 1) that autonomously produces statements capable of targeted manipulation of a col-

laborator's comprehension features based on anticipated task failures. Future work may provide

similar algorithms for providing information about non-terminal state rewards or for more generally

suggesting collaborator reward function updates.

Intuitively, Algorithm 1 performs a forward rollout of a policy trained on the estimated human

reward function, which may contain a subset of the information (factors) of the true reward function

known to the RARE agent. As in Figure 3.3, the collaborator may only know of r1, so we say it is

missing the reward factorr2. Upon completing this rollout, we also run forward rollouts for policies

trained on reward functions that include one more reward factor than the human's (Figure 3.2).

This step allows the RARE agent to �nd the most valuable single reward update to provide the

collaborator, updating their policy by changing one reward factor at a time, following an iterative

interaction pattern previously validated within HRI [149]. Finally, the update is serialized using
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Algorithm 1: Augment Terminal-State Reward Comprehension

Input: Factored Reward Function R, Set of Policies � Trained on Power Set of R,
Estimated Human Reward Function Rh , Domain MDP M = ( S; A; T ), Current
state sc

Output: Semantic Reward Correction
1 r c  0; // Cumulative reward
2 s0  ; ;
3 // Simulate existing human policy
4 � h  policy trained on Rh ;
5 while s is not terminal do
6 // Perform forward rollout of � h

7 s0  M T (s; � h(s));
8 r c  r c + R(s; � h(s); s0);
9 s  s0;

10 sh;terminal  s; // Terminal state of human policy
11 rh  r c;
12 // Find best single-comprehension-change
13 � 1  f � 2 � j � trained on R1 2 R s.t. R1 contains 1 additional factor of R� than Rh .g;
14 � c  ; ;
15 r �  rh ;
16 for � 2 � 1 do
17 s  sc;
18 r c  0;
19 while s is not terminal do
20 // Perform forward rollout of �
21 s0  M T (s; � (s));
22 r c  r c + R(s; � (s); s0);
23 s  s0;

24 if r c > r � then r c  r � ; � c  � ;

25 feedback \If you perform f describeaction(� h)g, you will fail the task in state
f describestate(sh;terminal )g because off describereward(di�( Rh ; R� ))g";

26 return feedback

designer-speci�ed action [150], state [92], and reward factor description functions.

3.1.4 Experimental Validation

To quantify the viability and e�ectiveness of RARE within a live human-robot collaboration,

we conducted a user study wherein participants had to solve a complex collaborative puzzle game

{ a color-based variant of Sudoku { collaboratively with a Rethink Robotics Sawyer manufactur-

ing robot. In the sections that follow, we present results characterizing participants' perception
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of a RARE-enabled robot that provides guidance during complex collaborations to prevent task

failure. Failure prevention was attempted by the robot by means of verbal interruptions taking

place between the human's selection of a color to play and the human's placement of that color.

Additionally, we investigate the role that justi�cation plays when providing advice that directly

alters the collaborator's understanding of the game.

Participants were recruited into one of two treatments that determined what the robot would

communicate when interrupting a human who is about to play a move that leads to failure: a failure

identi�cation-only condition (`control') where future failures are identi�ed but not explained, and

an experimental condition (`justi�cation') where future failures are both identi�ed and explained

to the collaborator. Participants were assigned to a third, implicit baseline condition (`no interrup-

tion') when no failures were detected and the robot did not interrupt the game.

Hypotheses We conducted a human-subjects study to investigate the following hypotheses re-

garding RARE's application within a live human-robot collaborative puzzle-solving task:

ˆ H1 : Participants will �nd the robot more helpful and useful when it explains why a failure

may occur (i.e., participants in the `justi�cation' condition will �nd the robot to be more

helpful than in `no interruption' condition and control condition.

ˆ H2 : Participants will �nd the robot to be more intelligent when it gives justi�cations for

its actions as compared to the other conditions.

ˆ H3 : Participants will �nd the robot more sociable when it provides justi�cations for its

failure mitigation than when it doesn't.

Experiment Design

To evaluate our hypotheses, we conducted a between-subjects user study using a color-based col-

laborative Sudoku variant played on a table with a grid overlay using colored toy blocks. Study

participants were assigned into one of three conditions:
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ˆ Control : The robot interrupts users that are about to make erroneous block placements,

indicating to them that it will cause task failure.

ˆ Justi�cation : The robot interrupts users about to make erroneous block placements,

indicating that it will cause task failure and explaining which game constraint will inevitably

be violated.

ˆ No Interruption : An implicit condition for participants that do not commit any errors

and experience interruptions by the robot.

During the game, participants place blocks concurrently with the robot (i.e., without turn-

taking), until the board is �lled. Participants were required to place blocks successively in the grid

cells most proximal to themselves, enforcing that the �nal row for both human and robot were

adjacent (the middle of the board). As in Sudoku, certain blocks were pre-placed on the board to

limit the solution space of the task.

The robot was pre-trained on all possible solutions for the game board, making it an expert

on the task. Human participants were not exposed to the board before beginning the task, and as

such could be considered novices trying to solve the game online | making them susceptible to

errors. During gameplay, the robot is able to verbally interrupt the human player before they place

a block that will make the game impossible to solve, with the opportunity to provide feedback that

may avoid task failure.

Rules of the Game

Participants must collaboratively solve a color-based 6x6 cell Sudoku variant (Figure 3.4), by placing

colored blocks on the table until the grid is �lled. There were six unique colors of block available,

with a large supply of all colors available to each player. Both the participant and robot were

required to place blocks from right to left, nearest-row to farthest-row, enforcing the constraint

that the middle of the board is �lled last (where the need for coordination is maximized). The

game has two major constraints (Figure 3.5) limiting the gameplay decisions of both the robot and
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