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Adaptive Training Systems for Human-Robot Interaction

Thesis directed by Profs. Bradley Hayes and Sriram Sankaranarayanan

This dissertation explores the development of intelligent tutoring systems tailored for train-

ing in human-robot interaction (HRI) tasks. This research stems from the increasing need for a

workforce capable of collaborating with automated systems. The work presented here addresses

this need by proposing Adaptive Training Systems (ATS) that can upskill and reskill the workforce.

I first provide an overview of the current state of adaptive training systems and lay out a

theoretical framework for their future development. I discuss automated assessment methods, ele-

ments of formative feedback, and existing training systems for psychomotor skills. The theoretical

framework is built upon the foundations of Intelligent Tutoring Systems (ITS), highlighting the

unique challenges and considerations necessary for adapting these systems to HRI tasks.

I then present empirical work focused on developing methods for automated assessment and

feedback. This work focuses on two domains: advanced vehicle drivers and drone pilots. For

advanced vehicle drivers, I introduce risk field models to symbolically model personalized driving

behavior parameters, predicting lapses in situational awareness and likely trajectories of future

behavior. For drone pilots, I employ temporal logic task specifications and robustness metrics to

evaluate performance, generating multimodal formative feedback to enhance learning outcomes.

The final section reflects on the presented work and discusses future research directions. I

revisit the proposed theoretical framework, assessing its applicability and suggesting improvements

for designing more effective ATS. The dissertation concludes by reviewing the key contributions,

emphasizing the potential of these adaptive systems to revolutionize training for complex, psy-

chomotor tasks in dynamic environments. Overall, the dissertation underscores the importance

of learner-centered, theory-grounded, and modular systems that can adapt to the evolving skill

requirements of the workforce, ensuring continuous improvement and skill refinement.



Dedication

To those who don’t fit into the traditional boxes.

It may take some work to find, but there is a space that is perfect for you.
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Chapter 1

Introduction

The continued development of advanced modeling tools such as foundation models provides

an exciting opportunity to adapt and augment current methods of teaching and learning [22]. These

tools allow us to more deeply interact with knowledge bases, integrate disparate data sources, and

personalize information delivery. In particular, educators have quickly adopted machine learning

and artificial intelligence tools to inform their teaching and develop personalized experiences for

learners.

1.1 Context

1.1.1 Learner Outcome Modeling

An important area of this research uses activity data to predict student success, with the

goal of informing instructors where to focus their efforts or delivering automated support. Previous

research on predicting student performance has focused on outcomes at a variety of levels. Most

broadly, some researchers have attempted to predict drop-out from MOOCs [35, 88] or a summative

measure of course performance such as course grade or final exam score [2, 5, 49, 105, 141, 161]

(for a review, see [112]). In contrast, other lines of research have predicted student performance on

individual assessment items [25, 28, 126, 128, 127, 129, 151], programming problems [50, 102], or

entire assessments [40, 49].

Previous approaches have used a variety of features and methods to predict student success.

One active line of research uses Bayesian Knowledge Tracing [32] and related methods [40] to model
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student mastery of specific concepts and skills based on performance on individual problems [14,

126, 128, 127, 129, 183]. Other research has predicted student performance using features external

to the immediate learning environment. These include student grades [49], prior performance within

the course [28, 50], historical course and instructor information [49], and student demographics [49].

Finally, a growing body of work has focused on predicting student performance using in-

formation from the immediate learning environment. Some work has found success using simple

counts of activities on the learning platform [2, 89, 141, 161] or engineered interaction patterns

and sequences [2, 25, 28, 49, 50, 102]. For example, [141] predicted performance on items using

measures of prior performance on specific concepts, current knowledge, item difficulty level, and

engineered activity features. In [74], we combine data-driven machine learning modeling with Item

Response Theory to predict formative quiz scores using student activity logs leading up to the quiz.

This work was published at the 2021 Learning Analytics and Knowledge Conference.

1.1.2 Affect Modeling

In addition to predicting outcomes such as grades, recent research emphasizes the important

role student affect and emotions play in the learning process. This work aims to both identify learner

emotional states and provides targeted interventions [39]. Common methods include physiological

sensors such as heart rate or recorded facial expressions while others rely on sensor-free approaches

meant to preserve learner privacy. Baker and Ocumpaugh review work in sensor-free affect detection

in educational software and discuss methods for collecting ground truth labels [13]. Additionally,

[71] reviews a representative collection of sensor-free affect detection models developed in authentic

classroom environments. In [75], we investigate how affective models generalize between different

groups of students and discuss the merits of personalized versus generalized affect detection models.

This work was published at the 2019 Educational Data Mining Conference.



3

1.1.3 Teacher Feedback

Research has also considered how to support teachers as they continue to learn and grow

in their profession. In the absence of frequent, effective professional development opportunities,

scholars have investigated how to deliver automated feedback to teachers so they can self-reflect on

their classroom effectiveness.

Previous work has used audio recordings to model classroom discourse at several different

levels. The coarsest level is activity classification, which attempts to classify classroom record-

ings according to broad categories such as discussion or individual seatwork. Using the Language

Environment Analysis (LENA) [56] system, Wang et al. [176] used an analysis of turn taking

dynamics to identify general classroom activities from audio. Similarly, Donnelly et al. [42] seg-

mented audio into 60-second windows and labeled each with the dominant classroom activity. They

then trained models to identify general classroom activities using utterance timing, language, and

acoustic features.

Recent work focuses on analysis of classroom discourse at the individual utterance level. For

example, Donnelly et al. [43] expands the work in [21] to specifically identify teacher questions.

In this work, they transcribed classroom speech using ASR and predicted teacher questions using

acoustic, linguistic, and context features. Stone et al. [166] used similar features as well as specific

words and phrases (n-grams) to improve utterance-level modeling of several discourse variables such

as content-specific questions and instructional statements. Suresh and colleagues have also success-

fully used deep learning methods to detect specific dialogic strategies in middle school mathematics

classrooms [169, 168].

Other work has focused on analysis of classroom discourse at the class session level rather

than individual utterances. This approach has been promising when predicting the prevalence of

infrequent discourse strategies such as open-ended questions [83]. For example, Olney et al. [121]

used word, part of speech, syntactic, and other discourse structure to directly predict the proportion

of open-ended questions for a class session. They also showed that this model outperformed models
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that aggregated predictions at the utterance level. Building off of the work in [121], Cook et

al. [31] found that models trained on words and phrases performed similarly to those trained on

predefined part of speech and discourse structure [30] features for predicting open-ended questions.

Importantly, combining the predictions from these models yielded improved performance over the

individual models.

Using automated models to provide teacher feedback is an area still in the beginning stages of

research. Dashboards are a popular method of giving student feedback; however, there is little work

analyzing potential benefits to teachers and how this may improve student learning [68, 109, 110,

146, 180]. There are a few notable examples of automated teacher feedback systems. Holstein and

colleagues have developed real-time systems that can inform and guide teachers during live class

sessions. In [68], they introduce Lumilo, which pairs smart glasses with an Intelligent Tutoring

System; this system alerts teachers when students need help that the tutoring system cannot

provide. Additionally, Poskin et al. developed a smartphone application TeachFX which models

the proportion of teacher talk using classroom audio recordings. Finally, Aslan et al. developed a

real-time system to alert teachers of student disengagement [6]. However, none of these systems

provide teachers with automatic discourse feedback. In [72], we designed an economical system for

teachers to record their own classroom data. We then developed dialog strategy detection models in

[72, 78] and explored several methods of presenting feedback to teachers. This work was published

at the 2020 CHI Conference on Human Factors in Computing Systems and the 2021 Learning

Analytics and Knowledge Conference.

1.1.4 Learning in the Workplace

In addition to the classroom setting, advanced computing capabilities are poised to transform

training in critical industrial and other workplace settings. Future industrial development will

depend on collaboration between humans and automated systems. While some fear losing jobs to

automation, experts argue there will be a need for highly-skilled human-automation teams that

can adapt to customer-specific tasks [19, 115]. Humans in these collaborative teams must be able

https://teachfx.com/


5

to understand how the autonomous system works, how to manage it, and how to adapt when

maintenance is needed or other technical issues arise [61]. A recent report estimates that one

third of job requirements will require technological skills that are not yet considered crucial [155],

meaning that employees will need to continually adapt as technological innovation continues.

Some of the most significant barriers to achieving this industrial development are the ability

to scale up capacity as well as upskill and reskill the current workforce [116]. Experts estimate that

50% of existing employees will need to be retrained or upskilled by 2025 to keep up with techno-

logical advancement, placing significant pressure on both employers and employees to meet these

demands [155, 99]. With the recent developments of artificial intelligence capabilities, researchers

are considering how to improve and automate this crucial training.

Training systems and programs for developing industrial skills are a promising opportunity

to expand the workforce. For example, sub-baccalaureate training programs and stackable cer-

tifications may allow disadvantaged workers to access the training needed to enter highly-skilled

industrial sectors [4]. In order to achieve this goal, training programs will need to focus on transfer-

able skills and present interfaces that are “customizable, individualized, and on-demand” to address

the needs of each unique learner [70].

Current training methods such as individualized instruction and pre-recorded modules cannot

scale up to meet this need to upskill. They also ignore the fact that many employees enter training

with skills that can be transferred to a new task. Intelligent Tutoring Systems (ITS) are designed to

meet just these demands in classrooms by developing personalized models of students and building

on knowledge the student has already mastered. Although previous work discusses applying these

approaches outside the classroom [154], existing approaches for training physical tasks has not

been systematically researched and integrated with learning theory. I discuss the current state of

automated training methods in Chapter 2.
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1.2 Thesis Statement

Recent work has developed a strong foundation for personalized learning and training systems.

However, the field is critically missing formative feedback immediately directed at the learner’s pre-

vious actions. This element of training is crucial for guiding motivation and strategies throughout

the learning process. Additionally, the work presented above and in Chapter 2 incur significant data

needs and rely on domain-specific modeling methods. In this dissertation, I develop an approach

to automated, formative, natural language feedback for human-robot interaction (HRI) tasks us-

ing assessment derived from formal task specifications. I demonstrate this approach in a driving

domain and a drone teleoperation domain.

1.3 Document Outline

This dissertation is organized into three main sections. In the first section, I discuss the

current state of Adaptive Training Systems (ATS) and develop a theoretical framework that can

be used for future systematic development. Chapter 2 includes an overview of automated assess-

ment methods, elements of formative feedback, and current training systems for psychomotor skills.

In Chapter 3, I discuss how ATS build on the foundations of ITS; although these research areas

share many characteristics, ATS encounter unique challenges that must be addressed through care-

ful system design and selection of computational tools. I present the main contribution of this

dissertation, which is a theoretical framework for developing ATS.

The second section of this document presents my empirical work developing methods for

automated assessment and feedback. Chapter 4 introduces the two domains of interest and connects

the studies with the proposed theoretical framework. In Chapter 5, I introduce risk field models

as a method for symbolically modeling personalized driving behavior parameters. This method

can also produce likely trajectories of the driver’s future behavior and predict lapses in situation

awareness. The work in this chapter was published at the 2022 Intelligent Transportation Systems

Conference [77] and the 2022 Cyber-Physical Human-Systems workshop [76]. Chapter 6 similarly
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uses symbolic logic in the form of temporal logic task specifications and evaluates quadrotor drone

piloting performance using a robustness metric. We show that this method can provide nuanced

understandings of operator performance. Using this evaluation method, we generate automated,

multimodal formative feedback to help pilots improve their performance. Components of this work

have been published as a late-breaking report at the 2023 Human-Robot Interaction Conference [73]

and as a workshop paper at the 2024 Human-Robot Interaction Conference [79].

The final section of this document reflects on the work presented here and discusses how to

move the research forward. In Chapter 7, I revisit the proposed framework and propose future

directions for designing ATS. Finally, Chapter 8 concludes the dissertation by reviewing the key

contributions.



Chapter 2

Background

This work focuses on training for complex psychomotor tasks. Psychomotor tasks require

the coordination of physical (grasping, teleoperating) and cognitive (planning, decision making)

elements to successfully complete the task [120]. I will adopt the definition of complex task given

by [179]:

(1) Completing the task requires the examinee to undergo multiple, non–trivial,
domain-relevant steps and/or cognitive processes.

(2) Multiple elements, or features, of each task performance are captured and
considered in the determination of summaries of ability and/or diagnostic
feedback.

(3) There is a high degree of potential variability in the data vectors for each task,
reflecting relatively unconstrained work product production.

(4) The evaluation of the adequacy of task solutions requires the task features to
be considered as an interdependent set, for which assumptions of conditional
independence typically do not hold.

2.1 Automated Assessment for Complex Psychomotor Tasks

Adaptive Training Systems (ATS) must be able to automatically assess performance before

providing feedback. This is especially difficult for complex psychomotor tasks because successful

performance depends on a variety of factors.

Assessment is also highly dependent on the task domain; as such, previous work in auto-

mated assessment has developed specialized methods for the specific domain. For example, Rauter

et al. analyzed performance on a rowing task by comparing the velocity profile of the rowing
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stroke against expert performance [143]. Other studies similarly compare performance to expert

trajectories as a benchmark for successful performance [156, 36]. Surgical robotics studies have

used physiological metrics such as smoothness, motion amplitudes, and muscular activation [177]

in addition to response time for unanticipated events [182]. A recent study evaluated performance

in human-robot teaming using number of collisions, number of re-grasps, and total task time [138].

The metrics presented here are largely outcome-based, meaning they provide an overall indication

of task success, but lack a nuanced description of the learner’s process of completing the task.

Additionally, the methods used to assess performance are not typically generalizable to task

variants or new domains. Recent examples of automated assessment (or more simply, error detec-

tion) include domains such as table tennis [104], martial arts [48, 47, 135], piano [113], medical first

response [136], industrial production [64], and surgery [149]. Many of these methods rely on neural

network classifiers, which require significant data to train and do not provide explanations for their

predictions.

To define tasks for robots, previous work has focused on the use of skill primitives, which are

atomic actions that may be combined and sequenced depending on the target task. For example, [80]

defines manipulation primitives which are defined by parameterized twist and wrench trajectories.

Other work uses these skill primitives in directed graphs [171] or a relational assembly model

[114]. From an human-robot interaction (HRI) perspective, robotic skill primitives can be used

in interfaces to allow human users to quickly define different tasks [165] or easily transfer tasks

between robotic systems [137]. These approaches are generally evaluated based on the performance

of the robotic system; that is, whether the task is successfully completed and other performance

metrics such as time-to-completion. We explore the concept of task primitives more in Chapter 6.

2.2 Formative Feedback

Providing feedback is key to improving a learner’s performance. Summative feedback provides

a general summary of performance after the learning program is completed [164]. While useful for

providing an overview of performance, learners are left to self-regulate their practice in the absence
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of other feedback. On the other hand, formative feedback is provided during the learning process

to help guide future learning [158]. This type of feedback is given more frequently and focuses on

encouragement. Based on recent reviews in the educational technology literature, we identified the

following elements of effective formative feedback:

• Reflection: feedback gives detailed information about the task, process, and encourages the

learner to self-reflect [134, 103, 15, 66].

• Motivation: feedback expresses confidence in the learner’s abilities [134, 103, 65].

• Timely : feedback is directly connected to the learner’s recent actions [103, 65].

• Actionable: feedback provides specific guidance for improvement that is related to the

assessment criteria [103, 65, 66].

• Manageable: feedback is detailed but not overwhelming to interpret [65, 66].

These elements of feedback have been shown to support learning outcomes and are positively

perceived by students in classroom learning settings. One goal of the study in Chapter 6 is to evalu-

ate whether this theory of effective feedback improves task performance in a complex psychomotor

task domain.

2.3 Training for Psychomotor Tasks

Recent work in training humans to work effectively with automated and robotic systems

is siloed into specific application domains, limiting possible insights about training more broadly.

If we consider training motor skills more broadly, many approaches focus on augmenting sensory

input to provide control-level feedback during a task [160]. Some examples include visualizing the

predicted future trajectory of a drone [178] or generating a haptic response to bias the operator to

an ideal course [1, 148].

Recent work in developing end-to-end ATS for complex psychomotor tasks has focused on

individual domains such as surgery, sports, marksmanship, karate, driving, aircraft maintenance,
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and additive manufacturing [96, 189, 154].

Several works have discussed how pedagogically-informed feedback strategies may be imple-

mented in training systems. For example, Korhonen et al. [92] and Pérez-Ramı́rez et al. [139]

discuss how theories such as embodied cognition can be implemented into virtual reality learning

environments. Other work proposes inserting erroneous solutions to encourage critical thinking

[26] or using adaptive epistemic feedback for training [100]. However, none of these studies have

implemented and evaluated the effectiveness of these theories.

Training systems that provide performance feedback tend to rely on prerecorded responses

or templates for reacting to failure modes [37, 123, 36] or display statistical summaries of key

performance outcomes [189, 156, 143]. An ultrasound placement study generated a visual compar-

ison between the learner’s placement and orientation compared to an expert [156]. These studies

indicate an opportunity to investigate the use of generated natural-language text for providing for-

mative feedback to learners. In the study presented in Chapter 6, we provide statistical summaries

as a baseline condition and compare learner performance to generated text containing the identified

elements of effective formative feedback.

Generating new training examples is out of scope for the work presented here. However,

some researchers have begun to explore how to define a curriculum for effective automated training

[98].



Chapter 3

Theoretical Framework

3.1 Introduction

In Chapter 1, I discussed the need for adaptive systems that can train the future workforce

for human-robot interaction (HRI) tasks and reviewed previous work in this area in Chapter 2. The

literature on automated training for complex, psychomotor tasks is relatively new and is lacking a

methodology guided by theories of learning.

Intelligent Tutoring Systems (ITS) research is a mature field and provides well-established

approaches to automated assessment, feedback, and task selection and generation. However, ITS

are limited by their use in static, well-defined domains such as algebra or introductory computer

programming. We need to adjust the approach and methods of these system to apply to HRI

domains.

In this chapter, I introduce the core contribution of this dissertation by describing a framework

for Adaptive Training Systems (ATS) based on the foundations of ITS. Figure 3.1 summarizes the

key components and relationships of the framework. The framework is defined by an iterative cycle

that is triggered when the learner attempts the provided task to demonstrate their skill. After the

task is complete, the system then assesses the learner’s performance, updating the internal record

of the learner’s skill, and generates specific feedback. Finally, the system provides the learner with

a new practice task and the cycle repeats.
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3.2 Background on Intelligent Tutoring Systems

Modern ITS developed from a desire to automate educational goals [33]. As computing tools

developed, researchers developed increasingly advanced systems such as Programmed Instruction

(mid 1960’s) and Intelligent Computer-Assisted Instruction (1980’s) [159]. The major elements

of ITS have been presented since 1973 [63] and have not considerably changed over the years.

Figure 3.2 gives a representative overview of these elements. Each element of the figure presents

its own series of research questions and design considerations. Many ITS have been developed

with the intent of improving a subset of these elements. For example, the Assistments platform

[144] was initially designed to address both assessment and assisting students; it is still used in

current studies continuing to refine other aspects of the platform. In this section, I provide more

background on key elements of Figure 3.2, focusing on pedagogical theory and how it may or may

not align with automated methods. An excellent overview of many of these elements can be found

in [132] and [133].

Domain modeling is used to define the scope of knowledge targeted by an ITS. This is similar

to setting concrete learning objectives for a course [38]. A common method of representing the

domain is the Knowledge-Learning-Instruction Framework [87]. In this framework, experts define

knowledge components as a fundamental unit of knowledge that can be inferred from performance

on a set of tasks (tasks often correspond to items in a formal assessment). A Q-matrix is then

a mapping between knowledge components and related tasks. That is, Qtk ∈ {0, 1} represents

whether task t is associated with knowledge component k. A common approach to modeling

knowledge components and their structure (such as a hierarchy of prerequisites) is dynamic Bayesian

networks, which can include uncertainty in estimated parameters [132]. Domain modeling is usually

done by experts in the target area, but some automated approaches exist for discovering latent

knowledge components [18]. Further discussion is outside the scope of this thesis; in the work I

present later, domain modeling is completed by the research team or, in the case where we use

existing tools, has been done by system designers.
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A learner’s knowledge and skills are inherently unobservable. To estimate what the learner

knows, we must represent the structure and dynamics of knowledge (Learner Modeling) and infer

the learner’s current state given their performance on a task (Assessment).

Learner models represent the learner’s current knowledge and skills. Using the Knowledge-

Learning-Instruction framework, a learner model corresponds to the probabilities that the learner

has mastered each knowledge component. A common learner model in ITS is Bayesian knowledge

tracing, where the student is represented as a Hidden Markov Model [32, 132]. This model assumes

a knowledge component is either known or unknown; students may transition between these at

discrete time steps (see Figure 3.3). The relevant parameters are:

• correctness of the observed answer (c)

• probability the learner mastered the knowledge component (θ)

• probability of initially knowing the knowledge component (Pi)

• probability of learning the knowledge component at the current time step (Pl)

• probability of slipping and answering incorrectly even if the knowledge component is known

(Ps)

• probability of guessing correctly even if the knowledge component is not known (Pg)

The learner parameters (Pi, Pl, Ps, and Pg) are global values applied to all learners. At each

time step, the model uses Bayes rule to update the new estimate of the learner’s skill (θ) based

on the correctness of their answer. There are many variations on the basic Bayesian knowledge

tracing model, such as models that allow individual student parameters [183] and varied item

difficulty [128].

Another popular learner model is Performance Factors Analysis [130], which is a class of

methods using a logistic function to update the learner’s estimated abilities and predict correctness

on a given item. This method is easily extended to include additional parameters such as item
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difficulty parameters. The above methods represent simplistic models of the learning process, but

have been shown to be effective in a variety of contexts. Recent work has also investigated the use

of machine learning methods such as neural networks [102]; these methods may be desirable in some

cases due to their lack of assumptions, but are less interpretable for users. The work presented

later in this thesis intentionally uses methods that allow interpretability.

Assessment is paired with a learner model to estimate whether the learner has mastered a

particular concept. Using the Knowledge-Learning-Instruction framework, performance on tasks is

mapped directly to knowledge components. For example, if a learner performs poorly on task t,

it is unlikely that they have mastered corresponding knowledge component k. ITS use a variety

of heuristics to determine if a learner has reached mastery [133]. For methods such as Bayesian

knowledge tracing and Performance Factors Analysis discussed above, performance estimates are

included as an estimated parameter in the model. This value can be used with an empirically

determined cutoff to signal mastery; for example, if the performance estimate θ is greater than 0.8

(out of 1), then the system may move the learner on to the next concept. Other mastery heuristics

that do not make assumptions about learning are:

• Consecutive correct: answering N items correctly in a row means the learner has mastered

the concept

• Moving average: answering N items correctly out of the last K attempts means the learner

has mastered the concept

• Exponential moving average: same as moving average but recent attempts are weighted

higher

Evidence-Centered Design [107] provides another approach to assessment seen less frequently

in the ITS literature. This approach designs the system around assessment (see Figure 3.4 using

input from both domain experts and system developers). Using this approach, the development

team starts by identifying key evidence that should be used to assess mastery. Training examples

and assessment activities are then developed to elicit this evidence. This approach is specifically
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designed for assessment in complex tasks, where a learner’s attempt gives more information than

just correctness. Similar to this approach, in Chapter 6 we present a framework for assessment in

HRI contexts; we define primitive tasks that compose larger tasks and develop a nuanced assessment

system using signal temporal logic specifications.

An instructional policy is used to move the learner towards mastery. These policies inform

what types of tasks we assign to learners and when we introduce material (this is the curriculum).

Instructional policy is an exciting opportunity to operationalize established pedagogical principles

into an automated learning context. Some examples of instructional policies include:

• Deliberate Practice [52]: refines performance through feedback and focused repetition

• Zone of Proximal Development [173]: scaffolds learning by maintaining a difficulty level

that the learner can achieve with assistance

• Spaced Repetition [7]: administers new or difficult concepts more frequently than mastered

or easy concepts

• Retrieval Practice [147]: promotes active retrieval of knowledge (usually through low-stakes

assessment) rather than simply reviewing information. It is especially effective when paired

with feedback.

Domain modeling and development of knowledge components give some required structure

to a curriculum; for example, some skills must be mastered before moving on to new concepts.

New modeling approaches have the opportunity to adapt problem presentation and ordering. Re-

cent work in reinforcement learning has framed curriculum generation as an optimization problem

attempting to maximize final performance [118].

Providing feedback about a learner’s performance is another type of instructional policy.

Summative feedback provides a general summary of performance after the learning program is

completed. These are often associated with stressful, high-stakes assessments such as course final

exams. On the other hand, formative feedback is provided during the learning process to help guide
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future learning [158]. This type of feedback is given more frequently and focuses on encouragement.

I discuss this more in Chapter 2.2.

A learner is much more than a computer that takes in data and applies it to a task; humans are

affected by their motivation, emotions, and strategies. A growing body of work is investigating how

the learner develops over time and interacts with the training systems themselves. Achievement

emotions (e.g., frustration, boredom, enjoyment) are well-studied for their impact on learning

outcomes in the classroom (see [131] for an overview). This theory is starting to be integrated

into ITS with the hope of building interventions and adjusting instruction based on a learner’s

current emotional state. Other work investigates how learners develop strategies to regulate their

own learning [9] and reflect on their performance [146].

3.3 Machine Learning for Classroom Skills

The framework presented in this chapter is informed by my previous work developing auto-

mated assessment and feedback tools in traditional classroom learning domains. In these studies, I

investigate how machine learning methods can be used to understand the learner’s internal states,

with the intention of providing personalized feedback and interventions. I give an overview of these

studies below and discuss the main lessons learned.

In [75], we developed models of students’ affective states using activity trace data. The

activity trace data included counts of actions in an online algebra learning environment such as

playing videos, posting on the discussion board, and answering quiz questions. Using data from

69,174 students, we trained Bayesian Ridge Regression models to predict ratings to surveys target-

ing affective states such as frustration, pride, and boredom. The core contribution of this study

is evaluating the benefits of using personalized models compared to a generic model trained on

the entire dataset. To do this, we clustered students into groups based on their demographic fea-

tures and usage patterns on the algebra platform and trained the affect models on data from those

groups of students. We found that these models had a small increase in predictive performance

compared to the general models, but the difference was not likely to be meaningful when integrated
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into a larger recommendation system. One key lesson from this study is that more data does not

always yield better models. After conducting simulations training the models at different sample

sizes, we found that increasing the dataset beyond 2,000 samples does not appreciably improve the

personalized models over the general model. However, models using less than 2,000 samples were

not stable and may not be reliable.

The work in [74] used the same online algebra domain. In this study, we developed models

to predict students’ scores on a formative algebra quiz using their activity data preceding the quiz.

Using data from 32,685 students, we trained Random Forest Regression models to predict student

scores on three-question quizzes. We compared these machine learning models to Item-Response

Theory models, which are theoretically-grounded models of student learning and assessment. The

key finding from this study is that features relating to more active learning strategies (such as

reviewing incorrect questions on a previous quiz) were predictive of higher quiz scores, which align

with ICAP [29] and retrieval practice [147] theories of learning.

Another project focused on developing speech models to support teachers’ professional de-

velopment. In [72], we equipped 16 English Language Arts teachers with microphones to record

their classroom speech. The teachers recorded 91.7 hours of classroom data. Experts coded a

subset of the speech data, yielding nearly 17,000 utterances. With this data, we developed an

automated pipeline using signal processing, feature extraction, and Random Forest models to pro-

cess the speech data and identify key elements of dialogic speech that have been shown to engage

and challenge students [157]. One practical finding of the study was that teachers were able to

self-record good quality data for automated analysis, even in noisy and unstructured classroom

environments. We also found that our models achieved comparable performance to human experts

in identifying dialogic speech and were robust to speech transcription errors.

In a follow-up study using the same dataset, we investigated how deep learning methods

impact the predictive accuracy and feedback effectiveness of the speech models [78]. We compared

the Random Forest models from the previous work with a fine-tuned BERT language model using

simulations of different dataset sizes. We found that the deep learning (BERT) models performed
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better for larger dataset sizes, but the Random Forest models were more accurate when using

smaller datasets and when identifying dialogic speech with lower incidence rates. When presenting

feedback at different levels of granularity, we also found that the deep learning models performed

better, although it is not clear whether this difference would appreciably benefit teachers. This

study served to highlight different design choices one could make while designing an automated

feedback system based on the availability of data resources and computing capabilities.

Several key methodological themes emerge from these studies. First, the automated methods

presented here depend on relatively large datasets. To train the models, we used over 70,000

affect surveys, 210,000 algebra quizzes, and 16,000 teacher utterances. Datasets of this scale will

likely not be available for robotics training, since tasks often require specialized equipment or take

more time to complete. Second, the domains we considered had well-defined labels, making them

suitable for supervised learning methods. For example, we used self-report data as labels for affect

and utterance-level expert codes for classroom discourse. In complex psychomotor tasks such as

teleoperation, skill assessment needs more nuance; a learner may be able to move an object to

the desired location, but their performance also depends on how many times they crashed into

other equipment and how much power they used to complete the task. Finally, the set of possible

assessment outcomes is fixed and not trivially changed. If we wanted to model a new affective

state, we would need to collect a new dataset of survey responses and train a new model. The next

section discusses the need to adapt the training framework to address these drawbacks so it can be

effective for training in more complex domains.

3.4 Adapting Intelligent Tutoring Systems for Human-Robot Interaction

ITS and ATS share several key components we can exploit for future development. First,

learners need to demonstrate mastery over a set of desired criteria. For ITS, these criteria may be a

set of knowledge components for a specific unit (e.g., adding fractions with different denominators).

The ATS I discuss here include a combination of cognitive and physical skills, such as planning

an efficient flight path. Given the performance criteria, both systems also assess learner mastery
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according to some domain model of ideal performance. ITS may use both experienced classroom

instructors and pedagogical researchers as domain experts for developing these models; the pool

of experts for developing HRI curricula will be much smaller, especially when teaching platform-

specific skills. Both ITS and ATS will need to provide interventions to move the learner towards

mastery. This may include just-in-time feedback during the task or more comprehensive analysis

after the task is complete (this is pictured in Figure 3.1). Finally, the system needs to decide what

the learner should work on next. ITS frequently include a bank of practice tasks as well as a robust

knowledge graph of how the learner should proceed through the curriculum. This structure is less

clear for ATS, which may have more skill components that can be combined in a variety of ways.

Despite these similarities, there are critical differences that impact the design of ATS com-

pared to ITS. The types of performance criteria are inherently different between the two types

of systems: ATS need to assess more than cognitive skills. This requires a different approach to

assessment that focuses on the nuance of performance rather than simply assessing whether the

performance was correct or incorrect. I discuss this more in Section 6.1.2. Second, ATS need to be

able to cover a wider range of possible training scenarios that vary over environmental conditions,

physical task layout, and task constraints. This makes it unlikely that ATS can depend on a fixed

set of task templates or predefined questions. We will need different methods to generate tasks that

target a specific skill for the learner to practice. Finally, it is unclear if or how learning processes

differ between cognitive and psychomotor tasks. There is little work exploring how previous the-

ories of learning transfer between these domains. This means that current principles of feedback

may not apply in ATS domains; at the very least, providing feedback will be more complex for

psychomotor skills.

Other practical differences surface when developing ATS. First, the role of the expert may be

much more limited in an ATS setting, since the targeted HRI platforms are much more specialized

compared to traditional academic settings. This means we need to empower others to be able

to develop these systems, such as through the design of intermediate interfaces that transform

natural language instruction into formal task specifications. Additionally, the capabilities of robots
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and autonomous systems are quickly evolving. As platforms become obsolete and new platforms

come online, we need to be able to transfer learner models between systems to reduce redundant

training. Finally, there currently is no standardized curriculum for psychomotor tasks. While

classroom learning domains often have structured learning paths that build on previous knowledge

to master more complex tasks, designers of ATS are forced to develop a curriculum in addition to

their desired technical innovations.

These differences between ITS and ATS objectives present several methodological challenges,

particularly for assessment. As discussed above, the typical data-driven pipeline often depends on

acquiring large datasets to develop predictive models. For HRI domains, more data may not be the

best approach. Similar to the principles in Evidence-Centered Design [107], developers will need

to think carefully about which data streams will be useful for assessment. Additionally, developing

methods that do not require prior learning will alleviate the need to collect more data for training.

Another key consideration is that assessment and decision-making methods will need to adapt as

the tasks change. As robotic systems develop new capabilities, their human collaborators will need

to adapt to new sets of required skills. In particular, machine learning assessment methods likely

will not be able to flexibly adapt to these changes since they are specifically trained to assess one

type of task. Work in model transfer and generalization may solve this challenge in the future.

Finally, ATS need to be able to differentiate between different aspects of performance. While some

work in ITS assessment includes the concept of partial credit [175], most related work in assessment

focuses on identifying why the learner got the problem incorrect rather than identifying nuances in

performance outcomes.

Based on these challenges, I propose the following principles and best practices that should

govern the development of ATS:

• Systems should be learner-centered. Learner modeling and interventions should focus on

personalization and adapting to the learner’s current skill level rather than following a fixed

procedure.
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• Systems should start with theory-grounded methods. While not all established pedagogical

theory will transfer to psychomotor tasks, using these approaches as a starting point will

allow for more systematic development and experimentation to determine the limits of these

theories.

• Systems should be modular. This will allow designers to quickly prototype new components

that target specific aspects of the training cycle while minimizing impact on other parts of

the system.

• Systems should emphasize real-world skills. To benefit learners, practice tasks need to

simulate key characteristics and challenges they will find in real life. This does not mean

visualizations need to be photo-realistic; rather, simulations can abstract away unnecessary

detail while focusing on developing realistic system dynamics and environmental conditions

that may impact their performance in the field.

• Systems should focus on continuous improvement and skill refinement. Learning should be

a cyclical process where learners repeatedly practice skills with increasing complexity.

The framework in the next section shows one method of integrating these design guidelines.

3.5 Proposed Framework for Adaptive Training Systems

The objective of this framework is to develop a dynamic and adaptive system designed to

enhance training in human-robot and autonomy interaction tasks. This framework aims to system-

atically guide learners through an iterative process that is personalized to the learner’s evolving

skill level. By integrating theory-driven policies with flexible computational assessment methods,

this framework seeks to address the unique challenges posed by the rapidly evolving nature of

robotic and autonomous systems, ultimately improving skill acquisition and making training more

accessible. While this framework can be applied to traditional academic domains, it is meant to

expand the scope of previous ITS frameworks to encompass complex psychomotor tasks.



23

The training cycle begins with a task attempt, where the learner tries to complete the given

HRI task. The initial task may be the full target task or a simpler version of the target task designed

to assess the learner’s current skill level. While the learner attempts the task, the system records

activity traces that document the learner’s actions. Activity traces may include control inputs,

trajectories of relevant task objects, and event records such as collisions and reaching waypoints.

These traces are stored in an activity history knowledge base and can be queried in later parts of

the learning cycle.

After the task attempt is completed, the system completes an assessment of the learner’s skill.

Using the assessment criteria and activity history, the system analyzes the learner’s performance

and updates the learner’s estimated skills in the learner model knowledge base. The assessment

module is flexible and can accommodate a variety of assessment methods and learner models.

Chapters 5 and 6 introduce two possible configurations.

The system then generates feedback based on the results of the assessment. First, the peda-

gogical policy knowledge base queries the learner model for the current estimated skill level. The

pedagogical policy can be determined based on a specified learning theory framework or data-driven

methods. Given the estimated skill level, the pedagogical policy determines the feedback content

and the feedback delivery. The feedback content consists of the information to be conveyed to

the learner. The feedback delivery involves the presentation of the information, such as feedback

modality and formality.

After delivering feedback, the system completes the learning cycle with task generation. Here,

the curriculum policy knowledge base queries both the learner model and pedagogical policy model

to determine what the learner should practice for the next cycle. Like the pedagogical and learner

policies, the curriculum policy can be based on a variety of established learning theories or policies

learned from data. The curriculum policy determines what skills to target, how difficult the task

should be, and the task assessment criteria. The system then generates a new practice task that

meets these criteria and presents the task to the user, starting the learning cycle again.

In this chapter, I present a model of after-interaction assessment and feedback, where each
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module processes sequentially after the learning attempt is complete. This framework can be

adapted to occur in real time, where the assessment, feedback, and task-generation modules happen

just-in-time while the learner is attempting the task. This approach can use predictions of the

learner’s future actions to proactively adjust the training content on the fly.

3.6 Conclusion

In this chapter, I introduced the central contribution of this dissertation, a framework for

ATS for HRI tasks. This framework addresses the limitations of ITS; namely, ITS are designed for

static and well-defined cognitive tasks. The framework presented in this chapter is a step towards

developing training systems for complex, psychomotor tasks whose required skills change over time.

In the remainder of this dissertation, I discuss the application of the proposed framework

in two case psychomotor domains: driving in an autonomous vehicle and piloting a quadcopter

drone. Chapter 5 investigates the use of risk field models as an assessment component of the

training framework. Chapter 6 investigates the use of formal task specifications for assessment and

generative artificial intelligence for creating personalized formative feedback.
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Figure 3.1: Diagram of the proposed ATS framework. Solid boxes represent actions and decisions,
cylinders represent knowledge bases, and dashed boxes represent the core modules of the framework.
Light arrows represent the flow of data within a module and heavy arrows represent the flow of the
iterative learning cycle.
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Figure 3.2: Overview of the elements of an ITS, from [159]

Figure 3.3: Depiction of structure and equations for Bayesian Knowledge Tracing from [132].
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Figure 3.4: Overview of the Assessment Cycle, from [108]



Chapter 4

Research Setup

The remainder of this dissertation will discuss how we applied elements of the theoretical

framework from Chapter 3 to two psychomotor domains. I first discuss the motivation for choosing

each domain and then introduce how the work in each domain fits into the theoretical framework

and the learning context.

4.1 Domain Selection

Psychomotor tasks are interesting to study because they are difficult to learn and are chal-

lenging to computationally assess. In this dissertation, I present work in two different psychomotor

domains. The first domain considers drivers in an advanced vehicle simulator. Driving is a common

task that most people have some experience with. In this task, drivers are given several competing

objectives that are not always possible to maintain at the same time. Chapter 5 investigates how

we can model learner behavior as they balance these objectives.

The driving domain we present here is a multi-objective optimization task where the driver

follows a path to a goal state. In Chapter 6, we introduce a multi-objective optimization task

with multiple phases; this is a drone landing task. The task requires pilots to maintain multiple

concurrent safety constraints and accomplish two sequential phases. Most people do not have

experience piloting drones, giving us more insight into the learning process.

Both domains presented here are safety critical, where persons and property are at risk in

the event of a crash. In addition, both domains are generalizable to several different contexts; one
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might drive a vehicle for personal use or for delivering shipments while drones may be used for

construction inspection tasks or search-and-rescue. Additionally, both driving and piloting require

multiple control inputs, broadening the potential behavior space.

4.2 Modeling Learner Behavior in a Multi-Objective, Single Phase

Optimization Task

4.2.1 Learning Context

In Chapter 5, we study drivers in a simulated vehicle with advanced driving features. In this

domain, drivers navigated a nighttime course with tight corners and limited visibility. The drivers

had multiple competing objectives: avoid hitting obstacles and maintain safe driving behaviors (e.g.,

staying in the center of lane, avoiding sharp turns). During the drive, participants encountered an

obstacle in the road they needed to avoid hitting while maintaining the original objectives as much

as possible. Each drive included four obstacles and drivers completed the drive at least three times.

4.2.2 Theoretical Framework Components

Task Attempt. We consider each encounter with an obstacle to be a task attempt. The

activity traces include the vehicle’s position and velocity, distance from the obstacle, distance from

the center of the lane, and the driver’s control inputs (steering angle and braking force). The

activity history knowledge base records these activity traces as a time series over the course of each

task attempt.

Assessment. Our work in this domain focuses primarily on the assessment module. Using

the activity history, we developed a risk field model that learns driver-specific behavior parameters

and saves them to the learner model. These parameters represent the driver’s relative adherence

to the competing driving objectives. Using this method, we can flexibly add or remove behavior

parameters to simulate different levels of situation awareness and can accurately model the driver’s

future trajectory over long horizons.

Feedback. The work we present in this dissertation does not explicitly manipulate feedback
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for this domain. Participants only receive haptic feedback when they crash into the obstacle or run

off the road, similar to what one would feel in a collision with another object. Because of this, we

did not define a pedagogical policy for the system.

Task Generation. We do not change the driving task between attempts. This is because our

goal was to combine repeated attempts at the same task to see how they differ. Since we did not

generate new tasks, we did not define a curriculum policy for the system.

4.3 Generating Formative Control Feedback in a Multi-Objective, Multiple

Phase Task Using Automated Assessment

4.3.1 Learning Context

In Chapter 6, we study pilots in two simulated quadcopter drone environments. In the first

study (Section 6.1.2), pilots completed a smooth vertical takeoff, hovered in a floating ring for

five seconds, and safely landed the drone in the original starting position using a dual-joystick

controller. Participants completed this task five times. In the second study (Section 6.3), pilots

landed a drone on a narrow landing platform. The pilots in this scenario had multiple objectives.

Before landing, they needed to avoid crashing in the narrow flight area. To successfully land, they

needed to keep the drone at a slow speed and shallow angle. Participants completed this task 20

times.

4.3.2 Theoretical Framework Components

Task Attempt. We consider each landing to be a task attempt. The activity traces include the

drone’s position, velocity, and tilt angle along with learner keyboard inputs to control the drone.

The activity history knowledge base records these activity traces as a time series for each task

attempt.

Assessment. Using the recorded activity history, we use temporal logic specifications to

assess landing performance for several task components. Using the robustness metric, we evaluated

how well the task attempt adhered to the specifications. The learner model stores the evaluated
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performance values at each time step of each task attempt.

Feedback. Using the robustness values stored in the learner model, the pedagogical policy

selects which task component needs the most improvement. The system then creates natural

language and image feedback using a generative AI prompt template that uses elements of effective

formative feedback.

Task Generation. We do not change the landing task between attempts. This allowed us to

focus on validating the assessment and feedback modules. We thus did not define a curriculum

policy for the system.



Chapter 5

Learner Modeling in a Multi-Objective, Single Phase Optimization Task

In this chapter we explore an approach to learner assessment in the context of human drivers

using vehicles with advanced driving capabilities. This work was originally published in [77, 76].

5.1 Introduction

We consider the problem of systematically modeling human control actions inside an intelli-

gent transportation system. Ideally, such a model would enable interpretable explanations of why

human drivers make certain control decisions in a given situation. Moreover, a model of driver

decisions should be able to capture the variation in human driving behavior and emulate qualita-

tively different driving behaviors. Such models of human drivers can be quite helpful in developing

autonomous vehicles that behave in a predictable manner and are able to operate on roads with

human-driven vehicles [17, 167]. In particular, we focus on modeling driver situational awareness.

Situational awareness, as the name implies, refers to the perception by an agent of different

aspects of their operating environment as well as knowledge of how these would affect their goals

and overall performance (Cf. [51]) 1 . For instance, an agent driving a car may possess situational

awareness of other cars that are in close proximity, so that they are aware of the positions, headings

and velocities of these cars as well as whether a future collision with any of these cars may be

imminent. Inferring the (lack of) situational awareness of an agent during task performance is a

challenging problem.

1 The terms “situational awareness” and “situation awareness” are used interchangeably. We will exclusively use
the former here.
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In this chapter, we first consider probabilistic models of human actions by building upon the

concept of artificial risk fields. Such risk fields map states of the system to non-negative risk

values, wherein larger risk values imply the state is close to a violation. The choice of a control

action from a given state by the human operator follows from the risk model in a simple way: the

probability that a given control action is chosen is proportional to the exponential of the risk at

the state that is reached at a fixed preview time by applying that action. We develop this idea

in the context of human control of a car wherein the human operator is tasked with driving the car

safely along a road while staying in the designated lane, and at the same time, avoiding obstacles

placed on the road. We first show how a family of possible risk functions can be formulated for

such tasks, wherein each risk function is obtained by instantiating some unknown parameters to

a specific values. We demonstrate how the risk function can yield a probability distribution over

possible choices of control input that a human operator may select from a given state, assuming

a fixed preview time. We also consider the problem of inferring risk functions from actual human

operator data. In particular, we show that deriving maximum likelihood risk function parameters

for a class of “additive” risk functions reduces to a convex optimization problem that can be solved

to global optimum.

We evaluate the proposed framework on data collected from human drivers inside a simulated

driving environment, wherein the humans are tasked to drive the vehicle along a fixed course while

avoiding obstacles placed along the vehicle’s path. Using data from six different drivers with up

to four trials around the course for each driver, we show that our approach can fit parameters

for risk models in each case. We explore the interpretation of these parameters showing how they

predict qualitatively different behaviors. Next, we evaluate the ability of our model to predict

future trajectories that are close to the ground truth trajectories. Here, we show that our model

can provide very accurate predictions with errors that lie within a few meters for predicting the

position 20 seconds out into the future. However, at the same time our model is less accurate for

predicting how drivers accelerate or decelerate over different portions of their driving tasks.

The main contributions of the proposed framework are: (a) We formalize the risk field-
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based approach that has been proposed by many researchers in the past [142, 59, 81, 90]. A key

contribution lies in formalizing the driver model based on a risk field as a stochastic model and

providing approaches to discovering model parameters from naturalistic data. (b) We instantiate

our framework to a driving simulator-based study of human operators driving a vehicle around in a

simulated course with obstacles. (c) Our empirical evaluation shows that risk field-based approach

can provide reasonable predictions of future trajectories. (d) Finally, we systematically vary risk

field parameters to generate distinct driver behaviors.

Additionally, we extend this work to infer key aspects of the driver’s situational awareness

on the fly. Our approach relies on passive observations of the vehicle state and control inputs.

For instance, our framework can predict the likelihood that the driver is aware of an obstacle in

front of them by matching the driver’s actions against two different hypotheses: one where the

driver is unaware of the obstacle and the other where the driver is aware. We use the underlying

probabilistic model to predict the likelihood of the driver’s currently observed control inputs under

each hypothesis. Therefore, using Bayes rule, we can then predict the probability that the driver is

unaware of the obstacle in front of them, or more precisely, if the driver’s actions are consistent with

someone who is unaware under the assumed probabilistic model. We show that our approach can

extend to other aspects such as ascribing a spatial position to the vehicle that is most compatible

with the driver’s current choice of control inputs under the assumed probabilistic model. Such

a position could inform us about the driver’s likely mental model of the vehicle state given their

actions.

Our approach can be quite useful in many practical applications in Human Cyber-Physical

Systems. Originating in the aviation domain [94], there has long been a focus on understanding

operator behavior in uncertain or dynamic environments. In particular, pilots as well as other

vehicle drivers need to be able to detect potentially dangerous situations so that they may react in

a timely manner. For vehicle drivers, unsafe situations may arise due to a variety of factors such

as fatigue during a long drive, a pedestrian suddenly entering the road, or when the autonomous

vehicle fails to identify a stopped emergency vehicle [23].
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The motivation for this work is to model driver situational awareness with the ultimate goal

of providing interventions through shared controllers or user interfaces. In this chapter, we predict

whether or not a driver has detected an imminent obstacle in the simulated driving task. We use

a risk field modeling approach to infer the driver’s mental state and their estimate of the distance

to an upcoming obstacle. We show that this approach can distinguish between trials where drivers

successfully avoid an obstacle and trials where drivers collide with the obstacle.

5.2 Related Work

Munir et al. [117] discuss the main challenges facing feedback control with human-in-the-loop;

in particular, they discuss the need for developing systematic models of human behavior. Previous

approaches to modeling driver behavior rely on cognitive models of human information processing.

Salvucci and Gray [153] exploit the tendency of a driver’s gaze to fixate on a near and far point.

Subsequent work by Salvucci [152] used models of human declarative and procedural knowledge in

the ACT-R cognitive architecture [3] to simulate steering angle and lateral position for navigating

curves. Our work also models human operator control choices in a systematic manner. The key

differences are two-fold: our model predicts a distribution over possible control inputs rather than

a fixed prediction based on the state. Also, unlike the works mentioned above, we do not aim to

model the mental processes that underlie the driver’s decision making.

Other work captures driver behaviors in a qualitative manner. For example, Zhang et al [186]

characterized drivers as novices or experts using a pattern recognizer on steering inputs. Similarly,

Filev et al [54] used a rule-based system to classify drivers as cautious or aggressive based on

the variation in their braking and acceleration behaviors. Finally, Wang et al [174] used k-means

clustering to identify key characteristics of long-term driving behaviors such as prudence, stability,

conflict proneness, and skillfulness. These approaches aim to develop driver profiles. Our approach

can be interpreted similarly by examining the relative weights of the risk model components; we

can additionally apply artificial risk fields as a generative model of future behavior.

Recent methods in modeling operator behavior are based on navigating “interaction fields”
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in the task environment [81]. Foundational work by Gibson et al [59] hypothesizes that humans

navigate a “field of safe travel” by evaluating possible paths based on subjective experience and

objective physical limitations. In the recent work of Kolekar et al [91], participants in a driving

simulator were asked to react to obstacles placed at varying positions relative to their vehicle. Based

on recorded reactions, the authors constructed a “driver’s risk field” surrounding the vehicle. In a

subsequent work [90], they then quantified a driver’s perceived risk as the product of their risk field

and the cost of certain events (colliding with obstacles). This leads to a controller which generates

human-like behavior in a variety of scenarios when set to maintain risk under a certain threshold.

The motivation for developing a risk field framework is similar to the work of Kolekar et

al [91, 90] in that we seek an interpretable and generative model of driving behavior grounded in

theories of human reasoning and decision making. Our approach differs from the above work in

several important respects. First, we define a risk field as a characteristic of the task environment

and control inputs selected by the operator. The operator then stochastically navigates this risk

space with the goal of minimizing risk. A second distinction is that because the risk fields presented

here are defined in the task environment, they extend to other scenarios besides driving.

Our approach is closely related to inverse reinforcement learning where the vehicle model

and operator’s actions are captured by a Markov Decision Process (MDP) model with unknown

reward functions. The goal is to infer these unknown rewards either through solving an optimiza-

tion problem [119, 188] or through Bayesian methods [140]. There has been a long history of using

inverse reinforcement to explain the actions of human operators inside a known environment [12].

The recent work of Ozkan et al studies how inverse reinforcement learning can be used to learn a

driver model that is able to predict lead vehicle following behaviors of human drivers in a 3D driv-

ing simulation environment [124]. Our approach bears many similarities to inverse reinforcement

learning: for instance, we can view risk fields as a (negative) “reward” function that the driver

is minimizing. However, some key differences exist: we explicitly consider a “preview time” that

the operator looks ahead into the future. This allows us to keep our risk functions simple since

they apply to the state that is reached at some time in the future. Inverse reinforcement learning
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approaches compute rewards/risks that apply to the current state. This means that they have to

consider more complicated functions than we do. As a result of our setup, we also have the benefit

of solving a convex optimization problem and thus guarantee that we can compute the most likely

model.

Rather than modeling the driver’s risk perception and control choice, data-driven approaches

such as Kim et al [84] and Long et al [181] train recurrent neural networks that input numerous

features such as the vehicle’s past trajectories and from its surrounding environment to predict

the future trajectories of the vehicle. While these approaches are promising as predictors of future

trajectories, they require a larger volume of data to reliably train and test a recurrent neural

network. It is often challenging to interpret variations between drivers or in general understand

these models once they are trained. Nevertheless, data driven approaches have proven more versatile

and capable of handling many more situations than our approach in this chapter. Our work is

currently aimed towards more narrowly defined settings although we hope to generalize it in future

iterations of our framework to handle a richer variety of driving scenarios.

When dealing with driver safety and situational awareness, recent work has focused on

takeover requests when an autonomous vehicle detects a possible collision or dangerous situation

[86, 170, 125].

A few recent papers have developed models to predict situational awareness. In a review

focused on situational awareness for connected cars, [60] discuss previous modeling approaches

applied to the core stages of situational awareness: perception, comprehension, projection, and

management. More recently, researchers have used advances in artificial intelligence to improve

real-time prediction of situational awareness using eye tracking data [187, 67]. In each case, the op-

erational definition of situational awareness varies, ranging from a composite of avoidance behaviors

in a takeover situation [187] to a function of eye fixations in key areas such as vehicle instruments

[67].
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Figure 5.1: Schematic diagram of the overall task setup showing initial set of states A, target set
B, obstacles Oi and optionally a reference path.

5.3 Artificial Risk Fields

We describe a general approach to defining human operator behavior using artificial risk

fields. Subsequently, we will apply the framework to a driving task in Section 5.4.

5.3.1 Problem Formulation

We consider a single vehicle inside a known environment of states x ∈ X. The human

driver’s task is to control the vehicle from a starting configuration A to a goal configuration B.

Additionally, we designate a set of obstacles O1, . . . , Om; each obstacle Oi ⊆ X represents an

unsafe configuration. It may also be natural to specify a “desired” path π that connects the start

to the end state, that the vehicle should stay close to (Figure 5.1).

The vehicle is modeled by its dynamics: dx
dt = f(x(t),u(t)), wherein x(t) models the state

at some time t and u(t) ∈ U models the action (control input) at time t and U is the set of actions

available to the human driver. The function f is assumed to be a fixed and known state update

function. Our approach makes some key assumptions about the behavior of the human operator:

• The operator knows the state x, or at least, those state variables involved in choosing the

control.

• The operator model is Markovian — i.e, the probability distribution depends on the current

state x and not necessarily on the path taken to reach the state.
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Whereas the assumptions above are somewhat restrictive, we note that our goal is to build

a model that predicts the operator’s decision making rather than capture the mental processes

involved in the decision making.

The overall goal of this chapter is to predict what control actions are likely to be chosen by

the human operator at a given state. That is, we seek to model the probability distribution of

P(u|x) that an action u that is chosen by the human operator at state x. Our model makes the

following assumptions about the operator’s control selection strategy:

• Each state x ∈ X is associated with a non-negative risk value risk(x;p) which provides an

aggregate numerical score, wherein p denotes a set of parameters that may be specific to

an individual operator at a given time. The higher the risk score associated with a state,

the closer it is to being a property violation such as entering a forbidden obstacle region or

deviating too far from a desired path.

• The operator plans ahead to some “preview” time δp > 0 into the future.

• The operator’s decision making balances two factors: the risk of the future state that would

be reached if a particular control were chosen against the magnitude of the control input.

Thus, the operator would prefer not to apply extreme values of brakes/acceleration or

steering inputs while at the same time they would prefer to stay away from obstacles and

close to the center of their designated lane.

We will first describe each component of the model starting with the risk function. Next, we

will describe how the overall probability distribution is defined.

5.3.2 Risk Function

The risk may be defined by many factors including the proximity of the state to various

obstacles and the deviation of the state from the desired path π. The risk function risk(x;p) is
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given by:
m∑
j=1

pjobstacleRisk(x, Oj) + pm+1deviationRisk(x, π) ,

wherein obstacleRisk(x, Oj) is a function that measures the risk connected with the state x being

inside (or close to) the obstacle Oj , and deviationRisk(x, π) measures the risk arising from the state

x being far way the reference path π (if one is given in the problem formulation). In general, any

function that ensures that the risk is monotonically decreasing as one moves away from the obstacle

can be chosen. Similarly, deviationRisk(x, π) will be 0 if x lies on the reference path, and increases

monotonically as the distance from the state x to the reference path π increases.

Finally, we note that the parameters p : (p1, . . . , pm+1) are non-negative weights that model

the relative weightages associated with avoiding various obstacles and being close to the reference

path. The choice of these parameters will affect the nature of the risk function. In Section 5.5, we

demonstrate how parameters for a risk model are chosen given observed experimental data.

5.3.3 Overall Operator Model

The next component of the risk model concerns the assumption of a preview time. Let x

be a current state and u be a control action under consideration. We assume that the operator

computes the state x′ at some fixed time δp > 0 in the future. In other words, let x′(u, δp) be the

state that results at time t + δp if the control action u were chosen at time t and held constant.

Also, we associate a non-negative cost to each control action u denoted by cost(u;q). Once again,

the cost model can be parameterized by a set of unknown parameters q that will be estimated from

experimental data.

The operator model we formulate assumes that

P(u|x) ∝ exp(−risk(x′(u, δp);p)− cost(u;q)) .

Suppose the set of possible actions U is a finite set {u1, . . . ,uN}, then we write the exact expression

as Eq. (5.1). The denominator normalizes the probability over all actions. For continuous set of

control actions, we can replace the summation by an integral over the set U . Doing so, we obtain
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the following expression for P(u|x):

exp(−risk(x′(u, δp);p)− cost(u;q))∑N
j=1 exp(−risk(x′(uj , δp);p)− cost(uj ;q))

. (5.1)

The operator model implicitly assumes that (a) the operator can forecast a future state x′(u)

some time δp in the future as a result of a control input u; and (b) chooses control actions which

yield future states with lower risk + cost values preferentially over those with higher risk + cost

values.

5.4 Driving Task

We describe the driving task that will be the central case-study to motivate our work and

develop a risk field model specific to the task.

5.4.1 Task Description

The driving task is performed in a medium-fidelity driving simulation environment developed

by the National Advanced Driving Simulator (NADS miniSim) at Purdue University [172]. The

system includes three high resolution monitors for displaying the driving environment and a smaller

monitor for the vehicle dashboard display. The user controls a steering wheel and foot pedals for

acceleration and braking as in a standard automobile (Figure 5.2, left).

Driving Scenario. The driving scenario consists of driving the simulated vehicle at night

time on a two lane city highway with four obstacles placed along the route. Illumination using

street lights was present. The overall simulated driving course distance was roughly 4.8 km (3

miles). To increase the difficulty of the task, participants were asked to drive one handed with their

non dominant hand. There were no oncoming, leading, or trailing vehicles. The obstacles were

placed so that they were visible only after the participant rounded the curve (Figure 5.2, right).

The objectives for the human driver are as follows:

• The operator must practice safe driving by keeping within their lane and minimizing devi-

ations. They must never exit the paved road.
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Figure 5.2: (Left) Picture of the NADS miniSim setup showing a participant driving along a
course (daytime simulation), (Right) plot of the centerline of the simulated course showing obstacle
placement as red circles.

• Obstacles (a tire) placed in the operator’s lane are to be avoided.

• Vehicle speed is to be maintained as close as possible to 45 mph (≈ 20 m/s) at all times.

Participants. The study was conducted with six participants (3 male, 3 female) with a

mean age of 21.33 years (SD = 0.82). Participants were all undergraduate students at Purdue

University, and were all engineering senior undergraduate students. On average, the participants

had 4.2 years of driving experience, with all of them reporting having driven 10K or more miles per

year, on average. The participants were allowed to practice driving the vehicle on the simulator

using a daytime practice course that involved an open highway.

Data Collection. Each participant drove the course over three (or in one case, four) separate

trials, yielding nineteen separate trials for the six participants, in total. Data collected includes the

position, velocity, heading angle, steering wheel position, accelerator/brake pedal positions sampled

at 60 Hz.

5.4.2 Risk Field Formulation

We will now derive risk models for the human driving task. First, we will describe a simple

unicycle model for the vehicle’s dynamics. This model is appropriate since effects such as cornering
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over tight turns, wheel slip and skids are not important for the speed and road conditions that

were simulated in the study. The state of the vehicle is described by x : (x, y, v, ψ), wherein x, y

denote the position in a fixed coordinate frame, v describes the velocity of the vehicle and ψ is the

heading angle. The control inputs are u1: the acceleration (or deceleration) and u2: the turning

rate. The dynamics are described by the ODEs:

ẋ = v cos(ψ) ẏ = v sin(ψ)

v̇ = u1 ψ̇ = u2

 (5.2)

We define the function ptLineDistance((x, y), C) as the Euclidean distance from a given posi-

tion (x, y) to the nearest point in the center-line C.

Similarly, we are given a list of obstacle positions O : [(xo,1, yo,1), · · · (xo,4, yo,4)]. Each obstacle

has a fixed diameter do = 0.3 meters. We define the function obstacleDistance((x, y), O) as the

Euclidean distance from a given position (x, y) to the obstacle that will be encountered next in the

vehicle’s direction of travel.

The overall risk for a given state x : (x, y, v, ψ) and control u is given by:

risk(x) :


A · ptLineDistance((x, y), C)2+

B · exp
(
−obstacleDistance((x,y),O)2

d2o

)
+

C · (v − vtgt)
2

(5.3)

and the cost of the control input is given by cost(u):

cost(u) : D · u21 +E · u22 (5.4)

Here A, . . . ,E ≥ 0 are unknown parameters whose values will determine the actual tradeoffs

that the driver makes while staying in their lane and avoiding the obstacles during the execution

of the task.

We consider control inputs u1 ∈ {−1,−0.9, · · · , 0.9, 1} (units are m/s2) and

u2 ∈ {−0.5,−0.45, · · · , 0.45, 0.5} (units are radians/s), yielding 400 discrete choices for (u1, u2).

For a given state x, the probability of control inputs (u1, u2) being chosen P((u1, u2) | x) is described
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Data: risk, cost: risk/cost functions, x0: Initial State, δp: preview time, δ: time step, ns: number of

simulation steps, U : {u1, . . . ,uN} all control inputs
Result: Sample Trajectory: x(0), . . . ,x(nsδ)
x(0) ← x0;
for s ← 1, · · · , ns do

for each uj ∈ U do
/* Simulate until the preview time. */

x′
j ← next(x(δ(s− 1)),uj , δp);

/* Calculate Risk. */

p(uj) ← exp(−risk(x′
j ;A,B,C)− cost(uj ;D,E));

end

sample u ∈ U with probability p(u)/
∑N

k=1 p(uk);
x(δs) ← next(x,u, δ) ; /* State for δs */

end

Algorithm 1: Algorithm for sampling a trajectory given risk and cost functions, initial states.

once again by Eq. (5.1). Here we define the risk and costs by Eqs. (5.3) and (5.4). The next state

x′(u, δp) is obtained by simulating the ODE in Eq. (5.2).

Algorithm 1 shows the overall algorithm for sampling a trajectory from the risk model.

5.5 Model Fitting

5.5.1 Maximum Likelihood Estimation

In this section, we consider how to infer a risk field given data in the form of states x(t) and

controls u(t). We will assume that the risks and costs are additive over component functions as

follows:

risk(x;p) :
m∑
j=1

pjfj(x), cost(u;q) :
l∑

i=1

qigi(u) . (5.5)

Note however, that we do not assume much for functions fj , gi other than that they are non-negative

and well-defined over the relevant values of x,u. The parameters for risk and cost functions are

collected as a vector (p1, . . . , pm, q1, . . . , ql). Assuming that the controls are chosen from a finite

set U : {u1, . . . ,uN}, fixing δp to be the preview time and next(x,u, δp) being the state reached

starting from current state x if control u is applied for time δp. Recall that the model chooses a

control input u for a state x in proportion to the risk and cost according to Eq. (5.1).

Let us assume that we are given driving data of the form (x(ti),u(ti)) consisting of states

and controls applied at various times ti for i = 1, . . . ,M . Our goal is to find risk parameters p,q
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logP(u|x) =
−
∑m

j=1 pjfj(x
′(u))−

∑l
i=1 qigi(u)

− log
(∑N

k=1 exp
(
−
∑m

j=1 pjfj(x
′(uk))−

∑l
i=1 qigi(uk)

)) . (5.6)

for Eq. (5.5) that maximizes the overall log-likelihood L(p,q) :
∑M

i=1 logP(u(ti)|x(ti)), wherein

P(u(ti)|x(ti)) is as given in Eq. (5.1).

Note that if the risk and cost models are additive as in Eq. (5.5), then the overall log-

likelihood L(p,q) is a concave function for a fixed value of δp. This means that we can solve the

maximization problem of a concave function (or alternatively minimization of a convex function)

to obtain a global optimum using standard off-the-shelf convex optimization tools[24].

Theorem 1. If the risk and cost models are additive as in Eq. (5.5), then the overall log-likelihood

L(p,q) is a concave function for a fixed value of δp.

Proof. The proof consists in observing that logP(u|x) is concave function of p,q. Let x′(u) denote

the value of next(x,u, δp). Expanding Eq. (5.1) using the form of the risk model in (5.5), we obtain

an expression for logP(u|x) in Eq. (5.6)

Since x,u are given to us in the data, the terms fj(x
′(u)) and gi(u) are all fixed constants.

Thus, as a function of p,q, we note that logP(u|x) is the difference of a linear function over p,q

and the log-sum-exp of linear function over p,q. This is a difference of a concave function and a

convex function, which is itself concave.The overall likelihood is the sum of concave functions, and

is concave.

5.5.2 Fitting Parameters From Obstacle Avoidance Data

In this section, we report on the application of the maximum likelihood minimization ap-

proach to the data obtained from six human drivers in the NADS vehicle simulator, as described

in Section 5.4.

We recall that each participant drove along a road with obstacles placed at periodic intervals.

In particular, each “trial” by a participant involved four encounters with the obstacle. We will fit

the risk model parameters using the data from each obstacle, using the scipy.optimize module
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Quantile A B C D E

5% 0.248 0.000 0.000 0.000 14.233
50% 0.544 16.349 0.000 1.416 40.782
95% 0.939 110.864 0.025 11.827 99.543

Table 5.1: Distribution of parameters fit around one obstacle, using the best preview time δp. There
were 76 total fit models.

for various values of δp ∈ {0.6, 0.8, 1.0, 1.2} seconds. The risk functions used are described in

Section 5.4.2 and in particular Eqs. (5.3) and (5.4). This yielded 19 trials × 4 obstacles = 76 fit

models for each of the four δp values.

For each obstacle encounter, we selected the preview time δp which maximizes the likelihood

of the data. Of the four δp values considered, 94.7% of fitted models achieved a maximum likelihood

using δp = 1.2 seconds. Thus, for a car driven at 20m/s, the preview distance is 24 meters.

Table 5.1 shows the distribution of fit parameters as the median value as well as extremely

low (5th percentile) and extremely high (95th percentile) values. We see that each parameter takes

on a different range of values, with the parameter C (associated with staying close to the target

velocity of 20m/s) varying very little (0− 0.025), whereas B (associated with the weightage placed

on obstacle avoidance) encompasses a wide range (0− 110.86).

5.6 Evaluating Driver Models

We first provide a preliminary analysis to evaluate the accuracy of our method for predicting

driver trajectories. Of the 19 initial recorded course trials, we removed any trial where the driver

collided with an obstacle, yielding 17 successful trials. For each successful trial, we fit risk field

parameters using the formulation in Section 5.4.2 and the driver data from the first two obstacles

in the trial. Using these parameters, we used Algorithm 1 to generate 100 trajectories for the held

out data of the last two obstacles in the trial. We used a preview time δp = 1.2 for all of the

trajectories based on the analysis from Section 5.5.2.

To define a single trajectory for comparison with the actual driver behavior, we took the
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1s 2s 5s 10s 20s

min 0.002 0.051 0.002 0.180 0.104
median 0.064 0.234 0.493 1.114 0.764
max 0.245 0.944 1.655 2.373 1.482

Table 5.2: Deviation (meters) of generated trajectory from actual human trajectory, across all
successful course trials. Results are reported at different times from the starting position (seconds)

median x and y value over the 100 trajectories at each time point. We then defined the divergence

of the generated trajectory as the distance from the median point to the line created by the human

trajectory. Table 5.2 shows the minimum, median, and maximum divergence from the human

trajectory at times t ∈ {1, 2, 5, 10, 20} seconds from the initial position.

Table 5.2 shows that, like one would intuitively expect, the deviation from the actual human

trajectory increases over time, except between 10 and 20 seconds. The change in deviations may

be a function of the course characteristics (e.g., rounding a turn) and also show that our model

can self-correct based on the high-level priorities defined in the risk field model. Additionally, these

results show that the model is able to predict the future position 20 seconds ahead with an error of

less than 3 meters. This is promising, given that the lane width in the driving task was 3 meters.

Figure 5.3 shows sample (x, y) trajectories predicted by our model and velocities over time

for three separate initial conditions drawn from the actual driver data. We also plot the actual

“ground-truth” data for each of these situations. It is interesting to see that the simulated (x, y)

trajectories are viable trajectories that keep close to the center line while avoiding obstacles. In the

bottom row of Figure 5.3, we see that the predicted velocity deviates from the true human driver

velocity by as much as 4 m/s, especially in cases where the driver accelerates swiftly. The mean

absolute difference in predicted velocity versus actual velocities are 0.1 m/s for predicting 1 seconds

out into the future, 1.3 m/s for 10 second prediction horizons and 2.5 m/s for 20 second horizon.

However, we also observe that our model has the tendency to under-estimate the actual velocity

around sharp turns: it is likely that the driver allows the vehicle to move towards the edge of their

lane to reduce steering effort and allow themselves to accelerate. We conclude that the participants
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do not prioritize the instruction to maintain their velocity around 20 m/s, while focusing more on

maintaining their lane position and avoiding obstacles. Modeling their choice of velocities requires

considerations that are subtly different from their perceived risk such as their self-confidence.

5.7 Characterizing Driver Behavior

Figure 5.3: (Top Row) Sample (x, y) trajectories generated by the risk model against ground truth
shown by red stars with centerline shown as a dashed black line and obstacle shown as red circle.
Warning: x and y axes are drawn to different scales. (Bottom Row) Corresponding velocity (m/s)
values over time against ground truth.

Showing the overall accuracy of our model, we reach the main research question, do the risk

model parameters account for different types of obstacle avoidance behavior? To answer this, we

will visualize generated trajectories using different parameter configurations. For each condition,

we used Algorithm 1 to generate 20 trajectories around the course segment for the first obstacle.

Our baseline comparison uses the median value for each parameter when calculating the risk field.

To simulate the condition using the low and high values of a parameter, we used the 5th and 95th

percentiles of the parameter, respectively, leaving the remainder of the parameters at their median

level (see Table 5.1). We used a preview time of δp = 1.2 as in the previous section.

Figure 5.4 shows the differences as we vary parameters from the baseline. In 5.4a we see
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that high values for A lead to trajectories very close to the centerline while low values for A stray

farther from the centerline. While 5.4b shows more consistent trajectories between conditions,

higher values for B leave a higher margin when passing the obstacle compared to the lower value

condition.

Since parameter D impacts user controls, we visualize the acceleration under the different

conditions rather than the physical position. In Figure 5.4c we see that high values of D lead to

much more consistent acceleration compared to the low values. For parameter E, in 5.4d low value

trajectories show a sharper decrease in steering rate after 5 time steps compared to the baseline

and high level trajectories.

Overall, we conclude that varying the risk model parameters has the expected change in the

trajectories. For instance, increasing B causes the trajectories to clear the obstacle with a much

larger safety margin. Increasing A on the other hand has the opposite effect of bringing trajectories

closer to the centerline.

5.8 Modeling Situational Awareness

In this section, we will use the previously described driver model to reason about the possible

situational awareness of the driver. Situational awareness refers to perception of key aspects of the

environment that will be critical for decision making on the part of the driver. Specifically, we will

capture the probability that the driver’s action indicate that they are aware of the obstacle in front

of them. Similarly, we will use the driver’s action to ascribe a “mental estimate” of the distance to

the obstacle.

Consider a vehicle state x : (x, y, v, ψ) with an obstacle O at some distance dist((x, y), O)

from the vehicle. Let us consider two alternative mental states: Aware: the driver is aware of

the obstacle in front of them, versus Unaware: the driver is unaware of the obstacle in front of

them. The key difference lies in the perceived risk in these states. If the driver is unaware of an

obstacle the risk model will not include the term associated with the obstacle, or in other words

dist((x, y), O) is taken to be ∞ in Eq. (5.3). Let riskun(x) denote the risk associated with state
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x assuming that the driver is unaware of the obstacle. This is equivalent to setting the distance

dist((x, y), O) = ∞ (or alternatively, B = 0) in Eq. (5.3). Note that when the driver is aware of the

obstacle, risk(x) according to Eq. (5.3) will continue to model the risk associated with a state x.

Thus, we define the probability:

P(u|x,unaware) ∝ exp (−riskun(next(x,u, δ))− cost(u)) (5.7)

whereas the probability of control choice when the driver is aware is given by Eq. (5.1), recalled

and simplified below:

P(u|x,aware) ∝ exp (−risk(next(x,u, δ))− cost(u)) (5.8)

The difference lies in the use of risk function as opposed to the riskun function. Suppose we have a

prior belief that the driver is unaware of the obstacle with probability pU , then by Bayes rule,

we obtain the following expression for P(unaware|u,x):

P(u|x,unaware)× pU
P(u|x,unaware)× pU + P(u|x,aware)× (1− pU )

. (5.9)

This allows us to provide a recursive estimate of the probability that the driver remains

unaware of the obstacle in front of them. We initialize the probability of being unaware to some

suitable starting value eg., pU = 0.5. At each step, we obtain a state x and a control input u from

the data. We use this to update the posterior probability according to Eq. (5.9). This provides

us the prior distribution for the next time step. Often however, when pU is close to 0 or 1, the

recursive process stops evolving when new data is available. To avoid this, we use an “ϵ-transition”

wherein the posterior value of pU is updated as p′U = (1 − ϵ)pU + ϵ
2 to yield a prior value for the

next time step. We set ϵ = 0.05 for our experiments.

Thus, we can obtain an estimate of the probability that the user is unaware of the obstacle

at each time step. Next, we can refine our analysis to ask other questions about the situational

awareness of the driver. For instance, we can use the risk model to infer the driver’s likely estimate

of their own position (x̂, ŷ). To do so, we set up a prior distribution over likely positions π(x̂, ŷ).
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Typically such a prior is specified as a uniform distribution over positions that are within some

distance of their true position. Given the vehicle state x : (x, y, v, ψ), let x̂ denote the state

(x̂, ŷ, v, ψ). Furthermore, for simplicity let us consider a finite set of hypothesized mental model

positions x̂1, . . . , x̂K . Our risk model allows us to evaluate P(u|x̂j) for a given control input u and

position x̂j . Once again using Bayes rule we obtain:

P(x̂j |u) =
P(u|x̂j)× π(xj , yj)∑K

k=1 P(u|x̂k)× π(xk, yk)
. (5.10)

5.9 Situational Awareness Results

Figure 5.5 shows some of the results obtained by our approach on actual encounters of various

drivers with different obstacles in the course. First, our risk model parameters A − E are simply

fixed to the mean values shown in Table 5.1. Next, we plot the probability P(unaware|x,u), having

initialized it to 0.5 at the very beginning of each obstacle encounter. Figure 5.5 shows four different

scenarios labeled (a)-(d). Scenario (a) represents the vehicle colliding with the obstacle. Notice

that the probability that the user is unaware of the obstacle rapidly rises from 0.5 to 1.0, about 1

second prior to the collision. We contrast that with Fig. 5.5 (b) wherein the obstacle is successfully

avoided. As expected, the estimated probability rapidly falls from 0.5 to below 0.1 nearly 1 second

prior to the vehicle passing the obstacle. Fig. 5.5 (c) also shows a successful obstacle avoidance

that is achieved by deviating from the center line much closer to the obstacle when compared to

Fig. 5.5 (b). As expected, we note that the probability that the user is unaware falls rapidly but

also rises back up. Finally, Fig. 5.5 (d) shows a situation where the driver approaches very close

to the obstacle without necessarily colliding with it. Our approach estimates that the probability

of being unaware of the obstacle rises rapidly.

Figure 5.6 plots the average of the driver’s own estimate of their position (x̂, ŷ) as inferred

by comparing the chosen control input against the risk model versus the actual ground truth

position. Figure 5.6(b)-(d) show cases where the obstacle is avoided whereas Figure 5.6(a) shows

the case when collision with obstacle occurs. As expected, for the cases when a collision is avoided
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successfully, the estimated positions seem to coincide with the actual positions. A marked difference

is observed in Figure 5.6(a) where a collision occurs. We interpret this result to mean that the

driver’s behavior in this case does not match what one would expect from the risk model. As a result,

the (x̂, ŷ) position wherein the driver’s control inputs would make “most sense” are farther away

from the vehicle’s current position. However, for Figures 5.6(b)-(d), this is less true – in general,

the decisions made by the driver seem more or less consistent with what would be expected at that

position under the assumed risk model.

5.10 Discussion and Future Work

In this chapter, we have presented an approach to model control choices of the human driver

by quantifying the risk and showing how the risk model can be inferred from data. We have also

demonstrated our approach on actual human driving data from a medium-fidelity simulation envi-

ronment showing that our models can accurately predict future positions and generate qualitatively

different driving behaviors. In particular, we show that deviation of generated trajectories from

the human trajectory remains relatively stable over time periods up to 20 seconds into the future.

The main area for improvement is that our model currently does not capture how human

operators control the velocity. We plan to improve this aspect of our model in our future work. For

example, we can consider more complex representations of risk and cost beyond the simple quadratic

model presented here. Additionally, a driver’s choice of velocity may depend on other factors such

as their confidence in driving or the overall level of risk of the current situation. The fact that our

models had very small values for the C parameter that measures velocity deviations from intended

target indicates that human driver behavior during the task may have been influenced by factors

different from risk. While our model was defined to maintain a predefined velocity as stated in the

task instructions, we observed that the drivers themselves did not adhere to this requirement.

The main result of this chapter shows that by using this risk model framework with simple

models for risk and control cost, we are able to generate distinct driver behaviors such as obstacle

avoidance and keeping to the center of the lane. Using real driver data collected in a simulation
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environment, we have also shown that we can extract unique parameters that characterize individual

driver behavior. Future work should investigate how accurately these models track more complex

human behavior over time. Additionally, this model can be used as part of a predictive run-

time monitoring system, where the goal is to predict impending violations of safety property (i.e.,

colliding with an obstacle) ahead of time. This system could be integrated into future driver safety

interfaces and be used to study potential handover protocols with autonomous driving subsystems.

At a general level, this framework can be used to model a variety of scenarios and adapted to

test hypotheses about human operator behavior. As discussed above, we noted that the participants

in the study did not maintain the target velocity given in the task instructions. When fitting the

risk model parameters, this behavior was indicated by the fact that the fitted values for parameter

C were heavily skewed to 0, indicating no effect. Future work can systematically test different

forms of the risk function to see which is a better fit for human behavior. This framework may also

be adapted in an attempt to infer the human’s true reward function during the driving task.

We also presented an extension of the risk field framework that constructs a probabilistic

model of human decision making in dynamic environments wherein our extension allows such

models to reason about key situational awareness properties of the user. The approach often

produces results that are consistent with the ground truth data.

Key limitations of our data collection methodology include the limited number of participants

and the straightforward nature of the driving task in our initial study. Some of these limitations

are being addressed by collaborators in ongoing studies at the time of writing that will explore

a larger pool of participants and more dynamic driving scenarios involving traffic patterns, wind,

visibility restrictions, moving obstacles on the road and construction.

The data collected did not include ground truth data about the actual situational awareness

of the drivers. Note that ground truth data about situational awareness is hard to collect, especially

since we are interested in detecting the lack of situational awareness. In the future, we propose

to correlate our approach with indirect measures such as gaze tracking data or more direct user

reports of their ongoing situational awareness in the future.
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This chapter contributes to the key results of the thesis by exploring a novel framework

to model the driver’s internal states such as individual risk behaviors and situational awareness.

Compared to machine-learning based learner modeling methods, the proposed risk framework pro-

vides several benefits: (1) we can learn accurate models using substantially less data, on the order

of tens of obstacle approaches per person; (2) model components are interpretable and easy to

interchange; and (3) we can systematically test theories of learners’ internal states and decision

processes by comparing different structures of the risk model framework. Future work will explore

how this framework can apply to a variety of interaction tasks. For example, we plan to address

dynamic scenarios involving multiple agents and include more complex task requirements in our

framework.
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Figure 5.4: Simulated trajectories using extreme low (5th percentile) and high values (95th per-
centile) for the parameters. From left to right, top to bottom; (a) parameter A: center line
deviation risk weightage; (b) parameter B: obstacle avoidance risk weightage; (c) parameter D:
cost for acceleration; (d) parameter E: cost for turning rate control.
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(a) (b) (c) (d)

Figure 5.5: Top Row: Combined plot of probability P(unaware|x,u) that the driver is unaware
of the obstacle in front (red) and distance from obstacle (blue); Bottom Row: Plot of vehicle
trajectory (shown as dotted red line) against the center line shown in solid blue and obstacle shown
as a filled red circle. (a)-(d) represent four selected scenarios each involving a different participant,
trial and obstacle in the course.
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(a) (b)

(c) (d)

Figure 5.6: Mean over estimated driver positions shown as black x versus actual positions shown
using red dots. The center line is shown in blue and obstacle is shown as a bright red circle.



Chapter 6

Generating Formative Control Feedback in a Multi-Objective, Multiple Phase

Task Using Automated Assessment

The work in Section 6.1 was originally published in [73] and the work in Section 6.2 was

originally presented in [79]. These sections describe preliminary work in automated assessment in

feedback. I then present a full experimental study incorporating these ideas in Section 6.3.

6.1 A Framework for Automated Assessment for Multi-Objective and Multi-

Phase Tasks

Skill is a highly valued attribute for numerous human endeavors. Thus, its measurement

is of great importance. The need for humans to co-operate with an autonomous system to skill-

fully complete safety-critical tasks is common across diverse domains such as surgery, planetary

exploration, and visual inspection using drones.

The problem of measuring skill is well-known to be extremely hard. Existing approaches

use examinations of an operator by qualified judges who provide numerical scores. This process is

often effort intensive, subject to bias and hard to automate. As a result, the numerical scores for

different operators who undergo different exams judged by a different panel of judges are hard to

compare against each other. The same problem arises when it comes to judging the same operator

at different points in time to measure their learning progress. Thus, we need a framework for

quantifying skill that is based on simple principles that can be applied uniformly in an unbiased

manner. Also, the idea of a single number representing skill level lacks nuance. For instance, a
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particular operator’s performance may exhibit better safety margins for the desired specifications

while sacrificing on time efficiency. This sort of nuance is often absent in a single score.

In this section, we attempt to formulate such a framework using a combination of ideas

from logic and control theory. Our proposed framework first identifies primitive tasks that

a skillful operator needs to demonstrate. Next, we use signal temporal logic (STL) to specify

these tasks in an unambiguous manner [93, 45] and define skill as a vector that measures the

demonstrated performance of a task. Next, we reflect on the various aspects that characterize a

skillful performance.

When considering teleoperation tasks such as piloting a drone, we arrive at several dimensions

along which we can evaluate performance:

Robustness: Performance of the required task that is clearly correct (compared to barely

correct) under nominal conditions. This aspect is especially important for safety-critical tasks.

Efficiency: Performance that minimizes time and energy.

Resiliency: Performance under varying environmental conditions for the teleoperated sys-

tem.

Readiness: Performance under variations in the human factors: eg., at different times of

day or different levels of comfort.

I provide a more rigorous background in skill assessment in Chapter 2. In this section, we

design a framework that seeks to evaluate each of these aspects of skillful performance in the context

of teleoperating a drone. We formalize notions of robustness and efficiency while demonstrating

how these notions allow us to evaluate human teleoperation of a drone in a simulation environment.

We first describe primitive tasks specified using temporal logic. Next, we will use this in our

framework to measure skill levels.

6.1.1 Primitive Tasks and Skills

Our proposed framework for measuring skillfulness starts from a domain-specific knowledge

of what tasks are to be performed by the operator. For instance, consider the job of teleoperating
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a drone to perform an inspection of an oil rig. To perform the overall inspection successfully,

the operator must be able to perform numerous atomic, primitive tasks such as taking off,

maneuvering, hovering and landing. The operator will need to be skilled in performing these

primitive tasks in an appropriate manner to complete the overall task at hand. Although the set of

all tasks that an operator can be called to perform can be a forbiddingly large, we can enumerate

a relatively smaller number of primitives that can be sequenced and combined to form complex

tasks.

For drone teleoperation, we define several (but not all possible) primitive tasks and the

required drone input controls in Table 6.1. These tasks can be sequenced and combined to form

complex tasks; for example, the operator may take off, perform a circular trajectory around a

landmark while also keeping the camera trained on it, and land near a charging station.

Table 6.1: Selection of primitive tasks for drone teleoperation

Primitive Task Controls Required

Angled takeoff upward throttle + pitch or roll
Angled landing downward throttle + pitch or roll
Straight angled line fixed pitch + roll
Curving line changing pitch + roll
Perspective change yaw
Hover in place throttle
Maintain altitude hover in place + pitch, roll, or yaw

Next, we need to carefully specify each of these primitives formally. Temporal logics were

originally proposed for this purpose in the field of computer-aided verification of hardware and

software systems [11, 101] and subsequently adopted to robotics as a means for specifying complex

robotic tasks [150, 20, 85, 106, 95]. The primitive tasks can be easily specified using a suitable

temporal logic. We propose to use metric/STL which include ability to specify real-time constraints

as part of the logic [93, 45]. Let (x(t), y(t), z(t)) represent the position of a drone with y axis pointing

vertically up, and (vx(t), vy(t), vz(t)) represent velocities along the respective axes. We will omit

other state variables that describe attitude and control inputs u(t) for simplicity.
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Hover in place for some time: Let [ymin, ymax] denote the desired range of altitude and

[−ϵ, ϵ] denote the desired limits on the velocity for some ϵ > 0. Let T be the minimum amount of

time we require the UAV to hover in place. In STL, we specify the desired task as follows:

Eventually
(
Always[0,T ] (y ∈ [ymin, ymax] ∧ |vy| ≤ ϵ)

)
.

Note that constraints on the attitude can exist but are omitted for simplicity. This formula requires

us to find a time window of at least T seconds where the y, vy are within desired bounds.

Vertical Takeoff: We specify a vertical takeoff from the ground y = 0 to some altitude

range H ± ϵ and a level velocity limit δ > 0 within T seconds. We specify this as:

(vy ≥ 0) until[0,T ] (|y −H| ≤ ϵ ∧ |vy| ≤ δ) .

The property specifies that the UAV rise up from the ground until it achieves an altitude in the

range H±ϵ with the vertical velocity in the range ±δ. A vertical landing can be similarly specified.

Temporal Logics provide two advantages: (a) unambiguous specification language that is close

to natural language and can be efficiently monitored in real-time [16]; and (b) the ability to measure

compliance in terms of distance between the operator’s trajectory and a desired specification. The

latter property is called robustness and will be explained in the subsequent section.

6.1.2 Measuring Skill

Robustness: We measure robustness of a task performance as a numerical distance be-

tween the actual performance and the desired task specification. Consider four trajectories T1−T4

in Figure 6.1. The overall task specification is to avoid region R1 and reach R2. We note that

trajectories T1 and T3 both achieve this task. However, T1 is seen to be more “robust” in achieving

the specification than T3 since it avoids R1 with a larger margin. At the same time T2 and T4

violate the specification. However, a small perturbation of T4 could have potentially caused it to

reach the region R2 and satisfy the specification. As a result, T4 is a “less severe” violation than

T2.
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T1

T2

T3

T4

R1

R2

Figure 6.1: Illustration of robustness for various trajectories T1 − T4 for a drone. The desired task
specification is to avoid the shaded region R1 and reach region R2.

The task in Figure 6.1 is specified in STL:

Always(¬R1)︸ ︷︷ ︸
avoid R1

∧ Eventually(R2)︸ ︷︷ ︸
Reach R2

The previous work of Fainekos et al [53] and Donze et al [46] allow us to systematically compute

robustness values with respect to the STL specification. This robustness has a positive value for

trajectories that satisfy this property and negative values for violating the trajectory. Robustness

measures the diameter of the smallest “tube” around a trajectory such that all trajectories that

stay inside this tube have the same outcome (satisfaction or violation) as the original trajectory.

Thus, T1’s robustness will yield a large positive value, whereas T3’s robustness will be positive but

smaller. Likewise, T2’s robustness will be a negative value with a large magnitude whereas T4’s

robustness is also negative but with a small magnitude.

Efficiency: Efficiency is concerned with minimizing use of resources. We can consider

resources such as: (a) Time efficiency: how much time is taken by the operator to complete the

task? (b) Resource efficiency: How much energy is expended by the operator? Often, control

designers express the resource efficiency as a function over the states of the trajectory and the
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control action of the human operator. While this is domain specific, it is easy to express and

evaluate systematically. (c) Control Variation: is the applied control jerky or smooth? This can

be measured by computing the total variation distance over the operator inputs. Depending on the

domain, there may be many types of efficiency, each contributing to a different skill dimension.

Resilience: Resilience pertains to the correct execution of a task under varying environ-

mental conditions. In a teleoperation setting these apply to the environment surrounding the remote

system. Thus, for a teleoperated drone environmental conditions manifest in many ways including

wind, sensor malfunctions, and damage to the drone. To measure resilience, we propose repeated

execution of a task under unanticipated off-nominal conditions and measuring how robustness of

the resulting trajectories vary with changing environmental conditions.

Readiness: Readiness depends on the context surrounding the operator themselves. We

posit that skilled operators exhibit readiness against changing contexts that may include their

physical comfort, or biological state such as time since last meal or sleepiness. This aspect of skill

is the hardest to measure systematically since it is often undesirable to subject humans knowingly

to adverse physical conditions.

6.1.3 Evaluation

We conducted an initial evaluation of the proposed skill assessment approach using data

collected from a convenience sample of five individuals. Using a drone piloting simulation imple-

mented in Unity (see Figure 6.2) and an Xbox controller, the target task was to take off vertically

to reach the floating target, hover within the floating target for five consecutive seconds, and land

vertically to reach the landing pad. Note that if the drone strays from the target area during the

hover segment, the timer is reset. Each person recorded two attempts of the specified task, yielding

10 different trajectories.

For each trajectory, we evaluated skill along the Robustness and Efficiency dimensions. We

discuss possible elicitation of Resiliency and Readiness in the next section.

Robustness: The specifications of takeoff and hover are as specified in Section 6.1.1. The
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Table 6.2: Robustness and efficiency measures for each recorded trajectory. The best values in each
column are bolded and the worst values are italicized. RO = Robustness, TE = Time Efficiency,
and CE = Control Efficiency

Takeoff Hover Land
Part. Trial RO TE CE RO TE CE RO TE CE

1
1 -4.99 -5.90 -1.79e-06 0.25 -40.32 -1.92e-06 -0.82 -5.38 -5.74e-06
2 -2.54 -6.11 -1.74e-06 0.09 -5.94 -2.91e-06 -2.19 -6.08 -2.60e-06

2
1 -7.14 -6.34 -1.62e-06 0.44 -44.72 -4.82e-06 -1.55 -3.53 -6.00e-06
2 -3.72 -7.60 -2.62e-06 0.12 -15.66 -4.89e-06 -1.59 -4.42 -6.58e-06

3
1 -1.66 -12.59 -2.51e-06 0.38 -22.40 -9.72e-06 -1.31 -3.23 -3.03e-06
2 -7.12 -8.70 -0.85e-06 0.25 -7.74 -6.62e-06 -0.65 -2.58 -2.07e-06

4
1 -1.63 -7.95 -1.97e-06 0.71 -5.22 -6.84e-06 -1.46 -3.85 -6.96e-06
2 -0.51 -10.33 -1.97e-06 0.93 -7.10 -6.81e-06 -0.13 -4.44 -4.46e-06

5
1 -0.00 -9.60 -5.67e-06 1.08 -6.06 -11.55e-06 -1.85 -4.69 -5.65e-06
2 -4.84 -5.42 -2.56e-06 0.95 -13.92 -8.15e-06 -1.32 -2.73 -6.01e-06

specification for landing is similar to takeoff but specifies a negative vy until the drone reaches a

minimum altitude with an appropriately small vertical velocity. We implemented a robustness com-

putation engine as a simplified version of the tool TaLiRo [58]. We calculated separate robustness

scores for each of the three task segments.

Efficiency: We measured time efficiency as the time required to complete each segment

of the task, where longer times are considered less efficient. For the takeoff and landing segments,

the minimum time (and thus most time efficient) to complete the task is essentially 0 seconds. For

the hover task, time efficiency is the time required to complete the hover outside of the minimum

5 seconds (if the drone never leaves the target area).

We measured control variation using mean variation distance. For each time t, we measured

the distance between the control input vector (roll, pitch, yaw, throttle) and the control input vector

at time t+ 1, scaling by the size of the time step. Smoother control actions yield less change and

smaller distances between the control input vectors. To remove redundancy with the time efficiency

measure, we computed the mean control variation over the given segment. Efficiency is coded as

a negative number, so larger (negative) values represent lower efficiency; this is done to align with

intuition that higher numbers are better scores.
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6.1.4 Results and Discussion

We present the robustness and efficiency measures for each recorded segment in Table 6.2.

One immediate finding is that all robustness estimates for the takeoff and landing segments are

negative, which means that none of the recorded trajectories met the desired specifications. In

particular, users flew the drone too fast at the end of the takeoff segment, overshooting the desired

ending location. For the landing segment, participants often missed the task change and hovered too

long before landing using a high speed. All robustness estimates for the hover segments were positive

by design, since the simulator would not trigger the next segment until the drone successfully

hovered at the target for the desired length of time (5 seconds).

The control efficiency values are very small. This is likely due to the fact that the simulator

task only required use of one control input (throttle) and thus the overall control input needed

was very small. However, we do see relative differences in control efficiency between the recorded

segments, with the hover task showing overall less control efficiency than the takeoff or landing

segments.

We arrive at more interesting findings by investigating the relationship between the different

skill measures. First, notice in Table 6.2 that Participant 5 in Trial 1 achieved the best robustness

and the worst control efficiency in the takeoff and hover segments (see Figure 6.3a). This could

be caused by the user “feathering” the controls in order to correct their trajectory. On the other

hand, Participant 3 in Trial 2 achieved the best robustness, time efficiency, and control efficiency

in the landing segment (see Figure 6.3b). This shows that these dimensions of skill are not neces-

sarily correlated, and may reflect individual user operating styles. Note that we cannot draw any

generalized examples here due to our small and non-representative sample of operators; we merely

attempt to highlight the nuance afforded by measuring skill along multiple dimensions.

Defining skill along multiple dimensions provides system designers with important decisions

as they develop products and interventions. For a specific domain, which aspect of skill is most

important? Perhaps the given task is so safety-critical that robustness is the only dimension that
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matters. Other tasks may depend more on resource efficiency. While we propose several possible

dimensions of skill, dimension reduction techniques applied to a larger volume of data may indicate

a smaller set of latent dimensions that measure skill.

A limitation of this preliminary analysis is that our data did not allow us to measure the

skill dimensions of Resiliency and Readiness. Future work can specifically test these dimensions

in a controlled user study by varying conditions in the simulator (e.g., wind, time of day) or the

user’s conditions (e.g., before/after meals, using distractor tasks). Future work can also extend the

proposed framework to describe more complicated tasks that require concurrent primitive skills.

Following additional user studies, we can also calculate the distribution of these skill values across a

larger population as well as plotting learning curves to see how users improve in various skill dimen-

sions over repeated trials. We plan to also incorporate user confidence ratings of their performance

and structured interviews to investigate how users experience skill development. For example, we

may see a change from effortful to automatic control such as in [82] or other more qualitative stages

of development as users acclimate the control into their own body perception [10, 55].

6.2 Using Large Language Models to Enable Automated Formative Feedback

Automated feedback is a promising approach to scale up training for human-robot interaction

(HRI) tasks. By pairing domain knowledge representations with effective assessment, automated

feedback systems can identify a learner’s current strengths and weaknesses and suggest future

actions that will help the learner master the target task. In this section, I discuss how Large

Language Models (LLMs) can be used as a tool for providing automated feedback for learning HRI

tasks alongside illustrative examples.

Representing knowledge and assessing someone’s ability in an HRI task is difficult, due to

complex objectives and high variability in human performance. In Section 6.1, we begin to address

this question by breaking down HRI tasks into objective primitives that can be combined sequen-

tially and concurrently (e.g., maintain slow speed and reach waypoints). We then show that STL

specifications, paired with a robustness metric, are a useful tool for assessing performance along
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each primitive. These formal methods allow designers to precisely represent ideal trajectories. This

formulation admits explainability, as one can identify and elaborate upon specific objectives that

learners did not accomplish.

We claim that LLMs can be paired with formal analysis methods to provide accessible, relevant

feedback for HRI tasks. While logic specifications are useful for defining and assessing a task, these

representations are not easily interpreted by non-experts. Luckily, LLMs are adept at generating

easy-to-understand text that explains difficult concepts. By integrating task assessment outcomes

and other contextual information into a prompt, we can effectively synthesize a useful set of rec-

ommendations for the learner to improve their performance (refer to Figure 3.1 as a reminder of

the central framework of this dissertation).

I discuss broader approaches to training for psychomotor tasks in Chapter 2. These ap-

proaches to feedback fall short in several respects: (1) just-in-time feedback does not promote

intentional reflection from the learner on how to improve their performance, (2) feedback is not

integrated with an established training curriculum, and (3) feedback does not adapt to a learner’s

learning trajectory over time.

LLMs are a promising technology poised to tackle these challenges in generating feedback.

To address challenge (1), we can develop feedback templates that include elements of effective

formative feedback. Formative feedback is an established approach in education that focuses on

motivating learners, having them reflect on their performance, and providing a manageable amount

of feedback they can use on their next attempt. LLMs can also be integrated with broader training

systems that document domain knowledge and skill structures, addressing challenge (2). Finally,

LLMs can access historical records of the learner’s performance to understand repeated mistakes

and opportunities for growth. The greatest strength of LLMs is generating friendly, approachable

text, making it ideal for providing feedback that learners perceive positively.

Feedback from LLMs is easy to iterate on and integrate into existing technical workflows. For

example, if a task involves multiple robots, we can quickly modify a template prompt for feedback

by including a short description of each robot’s dynamics or the specific part of the task it is used
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for. If we need a new feedback format to test a new learning theory, we can swap out the part of

the prompt that tells the model how to frame its response. Changing the feedback presentation is

also straightforward; the model can act as an intermediate interface between the task and feedback,

generating appropriate low-level code to display on a virtual reality headset or to be spoken by a

social robot.

The social implications of the proposed approach are also worth considering. As more people

are required to interact with robots, training needs to be scalable and personalized to each learner.

LLMs can help us reach this goal by making training a friendlier and more appealing process.

When paired with commercially available products like virtual reality headsets, training for robotic

systems can be accessible to a more diverse group of learners and enable them to train for technical

jobs. Additionally, automated feedback generation lessens the burden on human instructors, who

will not need to provide as much direct oversight during training.

As with any new technology that is not fully understood, there are many questions to consider

before integrating feedback from LLMs into high-stakes or high-impact HRI domains.

The first consideration is anticipating and handling unexpected outputs from the feedback

system. It is widely known that LLMs can produce incorrect and harmful responses due to the

stochastic nature of the model, biases in the training data, and nuances in system prompts. An

automated feedback system should have internal processes to moderate potential harmful outputs,

which can be built into the prompt. For example, Tree-of-Thought prompting [69] can be used to

emulate experts giving multiple feedback variations and having them reach a consensus based on

internal knowledge (recent performance, historical errors, possible emotional states). This approach

allows LLMs to recognize and discard inaccurate or poorly phrased feedback. Additional research

can collaborate with natural language processing efforts to develop safety alignment when training

new models [41].

The second consideration is implementing the feedback system in a robust and sustainable

manner. A feedback system requires a thorough yet flexible knowledge representation of the target

domain. Using principles from participatory design [163], system creators and domain experts
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can work together to identify key learning outcomes and assessment criteria. These core learning

concepts can then be codified in a formal framework such the Knowledge-Learning-Instruction

Framework [87], which associates each practice item with one or more knowledge components.

Finally, feedback systems should operationalize theory-driven intervention strategies for providing

feedback, such as the Zone of Proximal Development [173] or Deliberate Practice [52]. This would

bring more rigor to HRI studies while also contributing to interdisciplinary discourse on training

for real-world domains.

The study presented in the remainder of this chapter presents novel work starting to explore

how natural language feedback can be used in an adaptive training system (ATS) for a quadrotor

landing task.

6.3 Automated Assessment and Feedback Study

6.3.1 Contribution and Research Questions

The contribution of this section is a flexible and validated framework for automatically

assessing performance in multi-objective tasks and generating personalized formative

feedback. We accomplish this by pairing robustness measures of formal task specifications with

natural language feedback generated from pedagogically-grounded templates. In this study, we

compare groups that received summary metrics of their performance, automatically generated text

feedback, and text feedback paired with an annotated figure showing their trajectory. We evaluate

the system using the following research questions (RQs).

• RQ 1. Do participants perceive the elements of formative feedback differently between

score-based, semantic, or multimodal presentations?

• RQ 2. What factors predict the perception of formative feedback?

• RQ 3. How does automated formative feedback affect participants’ learning trajectory?
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6.3.2 Quadrotor Landing Task

In this experiment, participants completed a simulated quadrotor landing task. In this task,

participants used keyboard inputs to adjust the quadrotor’s throttle (vertical force) and attitude

(rotation for horizontal force). To achieve a safe landing, the quadrotor must reach the landing

pad with a speed less than 15 m/s and a rotation angle within ±5◦. We labeled a landing attempt

as unsafe if the drone reached the landing pad but did not satisfy the required speed or angle

constraints. All other landing attempts were crashes. We refer to a landing attempt as a trial. Each

trial was capped at 120 seconds. Figure 6.4 shows the initial configuration of the task participants

completed. The initial position of the drone and the landing pad did not change between trials. Yuh

et al.’s work provides more details on the dynamics of the quadrotor and design of the simulator

[184].

6.3.3 Participants

We recruited participants using the Prolific platform. All participants were United States

residents. 177 participants completed the study. Of these participants, 16 restarted the study

due to technical issues. To minimize confounding learning effects, we excluded six participants

that completed more than five trials before restarting. We excluded another four participants who

did not provide a good faith effort in the experiment, as measured by never using the horizontal

input controls and crashing the quadrotor on each trial. This resulted in a final dataset of 167

participants.

Participants ranged in age from 18 to 74 years, with a median age of 35 years. Their reported

gender identities were 73 Men (44%), 87 Women (52%) and 7 Non-binary individuals (4%). 97%

of participants reported no prior experience flying drones or have flown a drone a few times.

Participants reported a range of video game experience, with 30 not playing video games (18%),

46 playing monthly (27.5%), 40 playing weekly (24%) and 51 playing daily (30.5%).
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6.3.4 Experiment Design and Procedure

We conducted a between-subjects study with three experimental conditions. In the baseline

condition, participants received summary statistics such as their landing outcome and an overall

score of their performance, replicating prior work [185]. In the second condition, participants re-

ceived AI-generated text feedback, described in Section 6.3.6. In the third condition, participants

received AI-generated text feedback along with an annotated image of their trajectory, which high-

lighted an area of their trajectory to focus on improving. In our final dataset, 55 participants were

in the baseline condition, 56 participants were in the text feedback condition, and 56 participants

were in the multimodal feedback condition.

After consenting to participate in the study and reading the instructions for the task, par-

ticipants completed the quadrotor landing task. After each trial, participants received feedback on

their performance depending on their experimental condition. Participants then rated the feed-

back they received and completed the landing task again. After completing the task 20 times,

participants completed a brief demographic questionnaire and rated their overall perception of the

feedback they received. On average, participants completed the experiment in 29.12 minutes (SD

= 10.24 minutes). They spent an average of 28.12 seconds (SD = 11.08 seconds) reviewing and

rating their feedback on each trial.

6.3.5 Automated Assessment

The system automatically assessed landing performance using a previously validated frame-

work [73]. For each component of the task, we defined a specification using STL [44], a formalism

for specifying complex temporal tasks. For the quadrotor landing task, the specifications focused

on the safety and landing behaviors. The specifications are shown in Table 6.3. Robustness values

are a quantitative score that describes how well the trajectory of the quadrotor meets the given

specification; large positive values indicate better compliance (e.g., staying far away from the edge

of the simulation window) while large negative values indicate stronger violations (e.g., extreme
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landing angle) [44, 73].

Table 6.3: Overview of specifications for quadrotor landing task with range of possible robustness
values for the individual components. Note that the specific values for si and li depend on the size
of the simulation window and the quadrotor.

Description Specification Robustness Range

Avoid left edge s1 = x > 0 [0, 1210]
Avoid right edge s2 = x < 1250 [0, 1210]
Avoid bottom edge s3 = y > 0 [0, 575]
Avoid top edge s4 = y < 600 [0, 575]

Avoid left land edge l1 = x > 650 [-650, 560]
Avoid right land edge l2 = x < 850 [-360, 850]
Slow landing speed l3 = ||v|| < 15 [-17, 15]
Shallow landing angle l4 = |ϕ| < 5 [-24, 5]

Safety component S = ∧4
i=1si

Landing component L = ∧4
i=1li

Complete task in 120s S until[0,120] L

To keep the feedback manageable, we used a heuristic for selecting the top area of improve-

ment the participant should focus on for the next trial. The safety components were given the

highest priority; if the quadrotor crashed into any of the sides of the simulation window (indicated

by si = 0), this was selected as the area of improvement. If the quadrotor landed unsafely, ei-

ther landing speed or angle was chosen as the area of improvement (l3 or l4 < 0). For successful

landings, the area of improvement was selected as overall efficiency if the trial was longer than a

predetermined length or otherwise defaulted to smoothness.

6.3.6 Formative Feedback Design

Participants received formative feedback based on the context generated from the automated

assessment in Section 6.3.5 and natural language generated from a prompt incorporating the el-

ements of formative feedback discussed in Section 2.2. The prompt included a description of the

target task, the identified area of improvement, the generated image of the trajectory, and an ex-

planation of what each element of the feedback should contain. We used GPT-4V [122] to generate

the text feedback.
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The visual feedback consisted of an image of the landing trajectory with a superimposed

circle to highlight a specific area of improvement along the trajectory. We identified the location

of the circle using the area of improvement heuristic described in Section 6.3.5. In the event of a

crash, we placed the circle on the location where the quadrotor crashed. If the quadrotor landed

unsafely, we placed the circle at the point in the last 50 steps in the trajectory that had the worst

robustness for landing speed or landing angle. For a safe landing, we placed the circle at the point

in the trajectory with the highest combined control inputs.

Figure 6.5 shows an example of each type of feedback. We generated the full set of text and

image feedback regardless of condition so participants waited the same amount of time between

trials.

6.3.7 Measures

Subjective Measures. After each trial, participants rated the feedback they received. The

purpose of the survey items was to understand how the generated feedback aligned with the desired

dimensions of formative feedback described in Section 2.2. Table 6.4 summarizes the survey items

participants completed after each trial. After completing the experiment, participants completed

an exit survey that recorded their gender identity, age, experience flying drones, and video game

experience. Participants also rated how helpful the feedback was overall (“The feedback I received

helped me perform better on the task”; 1 = Strongly disagree, 5 = Strongly agree) and provided a

text response discussing how the feedback influenced their piloting strategy over time.

Objective Measures. We recorded the trajectory for each trial. The trajectory data included

the quadrotor’s x and y position and velocity, the quadrotor’s rotation, and the participant’s control

throttle and attitude inputs. For each time step, we also calculated the trajectory’s robustness

according to the specifications in Section 6.3.5. We recorded both trajectory and robustness data

at 50 Hz.
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Table 6.4: Summary of the survey items participants completed after receiving feedback for a given
trial. Participants rated their feedback using these items for each of the 20 trials in the experiment.

Feedback Dimension Survey Item Response Options

Motivation
“The feedback motivated me
to do better in future trials.”

1 = Strongly disagree,
5 = Strongly agree

Manageable
“How much information did
the feedback give?”

1 = Much too little,
5 = Much too much

Actionable
“The feedback suggestions
were actionable.”

1 = Strongly disagree,
5 = Strongly agree

Timely
“How often was the feedback
presented?”

1 = Much too infrequent,
5 = Much too often

Reflection
“The feedback prompted me to
reflect on my performance.”

1 = Strongly disagree,
5 = Strongly agree

6.3.8 Data Analysis

RQs 1 and 2 ask how participants perceived the feedback they received. The variables of

interest were the subjective measures on each feedback dimension shown in Table 6.4 and the

overall rating of feedback helpfulness, which yielded ordinal values. We found little discrimination

between the extreme values of the Likert scales (Strongly Agree vs. Agree and Strongly Disagree

vs. Disagree) so we collapsed these measures to a three-point scale (Disagree, Neutral, Agree) for

analysis.

To answer RQ 1, we used the Kruskal-Wallis H-test to test for differences in feedback ratings

between groups. As mentioned above, participants rated each dimension of feedback after every

trial. To create independent samples, we aggregated survey responses for each participant across

trials by calculating the most common response for each item. We found that participant ratings

do not change much over time, which suggests that this method of aggregation provides an overall

rating of each dimension of feedback.

We used ordered logistic regression models to answer RQ 2. The outcome variables were each

participant’s overall rating for each feedback dimension and their overall rating of the feedback’s

helpfulness. The independent variables included participant demographics, total number of safe
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landings, average trial time, and average time spent reviewing feedback. We also performed a trial-

wise analysis of the feedback ratings, using trial time, feedback time, trial number, and landing

outcome as predictors. The coefficients of these models (β) represent log-odds; we also report

odds-ratios as OR to aid with interpretation.

For RQ3, we considered several metrics of learning trajectory. We first evaluated mastery

of the quadrotor landing task by calculating how many participants in each condition achieved

at least one safe landing across the 20 trials. We used Fisher’s Exact Test to test for differences

between feedback conditions. We also considered how much participants improved in the task over

time. We measured this by calculating how many more safe landings each participant achieved in

the second half of the trials compared to the first half. To compare differences between feedback

conditions, we used an independent-samples t-test.

6.3.9 Results

RQ 1 asks if participants in different feedback conditions perceived the dimensions of for-

mative feedback differently. There is a statistically significant difference in ratings along the man-

ageable (H(2) = 18.0, p < 0.001) and actionable (H(2) = 18.1, p < 0.001) dimensions. Post-hoc

Dunn’s test with Bonferroni corrections reveals a significant difference in ratings along the man-

ageable dimension between the baseline and text feedback conditions (p < 0.001) and between

the baseline and multimodal feedback conditions (p = 0.005). There is also a significant differ-

ence in ratings along the actionable dimension between the baseline and text feedback conditions

(p < 0.001) and between the baseline and multimodal feedback conditions (p < 0.001). There are

no differences in ratings between the non-baseline feedback conditions. There are no significant

differences in ratings for the motivation, timely, or reflection dimensions between the feedback

groups.

A closer investigation of the distributions of survey responses shows that while participants

in all conditions rate the manageability of the feedback as the right amount of information (50-

60% of participants in each condition), more participants rate the generated feedback conditions
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as providing too much information (32-41%). Participants in the baseline condition are more

likely to rate the feedback as having not enough information (29%). More participants receiving

generated feedback agree that the feedback was actionable (66-70% of participants), while only 35%

of participants in the baseline condition agree that the feedback was actionable. Figure 6.6 shows

the distributions of ratings for the manageable and actionable feedback dimensions.

Although there are no significant differences between groups, participants as a whole generally

find the feedback to be motivational (58-64% agree) and prompting reflection (64-70% agree). Par-

ticipants also report similar ratings for the timely dimension, with 25-39% reporting that feedback

was delivered too often.

There is no significant difference between groups regarding where they found the feedback

helpful to improving their performance. The majority of participants in the generated feedback

conditions agree that the feedback benefited their performance (61-66%) and 45% of participants

in the baseline condition agree that the feedback helped their performance on the task.

RQ 2 asked what factors predict the perception of formative feedback. We first fit an or-

dered logistic regression model to predict the rating of whether the feedback helped improve perfor-

mance. While none of the demographic variables are significant predictors, four of the five aggregate

measures of formative feedback are significant (p < 0.05). Participants with higher ‘motivation’

(β = +0.97, OR = 2.36) and higher ‘reflection’ (β = +0.76, OR = 2.14) responses are more likely

to rate the feedback as more helpful. Participants with higher ‘timely’ responses are more likely to

rate the feedback as less helpful (β = −1.12, OR = 0.33), since higher ‘timely’ ratings correspond

to the perception that the feedback was given too often. Those with higher ‘manageable’ ratings

rate the feedback as more helpful (β = +1.10, OR = 3.01), which is interesting because higher

manageable ratings mean the feedback contained too much information.

There are few variables that predict overall ratings for the elements of formative feedback.

Participants with more experience with drones were more likely to rate the manageable dimension as

having not enough information (β = −0.80, OR = 0.45). Those who achieved more safe landings

are more likely to rate the feedback as occurring too often (β = +0.09, OR = 1.10). Older
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participants rate the feedback as promoting more reflection (β = +0.06, OR = 1.06). Finally,

participants that spent more time completing the experiment rate the feedback as promoting less

reflection, although this difference is small (β = −0.001, OR = 1.00).

Table 6.5 summarizes which variables predicted feedback ratings at the trial level. Motivation,

reflection, and actionable ratings increase with longer trial times and more time spent reviewing

feedback. Participants view feedback more negatively as the experiment progresses, with higher

trial numbers corresponding to lower motivation, reflection, and actionable ratings. Participants

also rate the feedback as containing too much information and occurring too often when they

achieve more successful landings.

Table 6.5: Predictors of trial-wise feedback ratings for each dimension. We report only significant
(p < 0.05) coefficients as β with corresponding odds-ratios.

Predictor
Motivation
(β, OR)

Manageable
(β, OR)

Timely
(β, OR)

Reflection
(β, OR)

Actionable
(β, OR)

Trial Time (s) +0.005, 1.00 -0.01, 0.99 +0.01, 1.01 +0.004, 1.00
Feedback Time (s) +0.01, 1.01 +0.01, 1.01 +0.01, 1.01 +0.01, 1.01
Trial Number -0.03, 0.97 +0.02, 1.02 -0.03, 0.97 -0.02, 0.98
Type of Landing +0.15, 1.17 +0.33, 1.40

RQ 3 asks how learning trajectories differed between groups. Fisher’s Exact Test shows a

significant difference in the number of people who failed to achieve a safe landing in any of the

trials between the multimodal feedback condition and the baseline condition (p = 0.04). Only two

participants fail to achieve a safe landing in the multimodal feedback condition (3.6%), compared

to eight participants in the baseline condition (14.5%). There are no differences between the

multimodal and text feedback conditions or the text and baseline feedback conditions.

All groups improved their performance at the task, as demonstrated by fewer crashes and

more safe landings in the second half of the trials (see Table 6.6). Participants in the multimodal

feedback condition show a larger increase in safe landings (M = 2.4 more safe landings, SD = 2.3)

compared to the text feedback condition (M = 1.4, SD = 2.7), t(110) = 2.2, p = 0.03. There are

no significant differences between the baseline condition and the other feedback conditions.
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Table 6.6: Average (SD) number of landings for each feedback condition, calculated for the first and
second half of the trials and for the whole experiment. Improvement is the average (SD) number
more landings in the second half of trials.

Safe Landings Safe and Unsafe Landings

Condition
Trials
1-10

Trials
11-20

Improvement
All
Trials

Trials
1-10

Trials
11-20

Improvement
All
Trials

Baseline
3.42
(2.85)

5.40
(3.28)

1.98
(2.18)

8.82
(5.75)

7.04
(2.24)

8.53
(1.93)

1.49
(1.92)

15.56
(3.71)

Text
3.05
(2.96)

4.41
(3.07)

1.36
(2.65)

7.46
(5.42)

6.55
(2.61)

8.20
(2.02)

1.64
(2.19)

14.75
(4.17)

Multimodal
2.75
(2.46)

5.12
(2.52)

2.38
(2.33)

7.88
(4.39)

6.93
(2.21)

8.89
(1.27)

1.96
(1.93)

15.82
(3.06)

6.3.10 Main Findings

In this chapter, we developed an end-to-end training system that assesses performance and

provides actionable feedback on a quadrotor landing task with no human intervention. The system

uses temporal logic task specifications and task demonstrations to assess performance and provide

formative feedback to the learner. We found significant differences in how manageable and action-

able participants in the different conditions perceived the feedback. Importantly, we found several

differences in learning outcomes between conditions. Participants receiving multimodal feed-

back were more likely to safely land the quadrotor and showed greater improvement

in safe landings in the second half of trials compared to other feedback conditions.

Overall, participants in all conditions had favorable views of the feedback they received. In

particular, participants in the formative feedback conditions mentioned how the feedback impacted

their motivation and self-confidence. One participant in the text feedback condition noted, “Overall

the encouragement was genuinely nice to receive, and helped to give motivation in completing the

task and wanting to do well.” Participants in the text and multimodal feedback conditions also

reported the feedback felt personalized to their own skills and struggles. Another participant

receiving text feedback reported, “The feedback actually felt tailored to me, and not just the same

stock answer every time.”
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Participants in the baseline condition showed surprisingly positive perceptions of their feed-

back. The written responses indicated that participants were motivated by wanting to figure out

how to improve their performance score. One participant noted, “I tried to tell which criteria

affected the score more, and how.” Although we did not specifically design the baseline condition

to be motivational and engaging, this result is in line with work showing that feedback can be

intrinsic to the learner [27]. Future works can investigate how to integrate feedback with principles

of self-regulated and gamified learning.

However, we found that participants naturally differentiated between performance data and

formative feedback. In particular, participants in the baseline condition pushed back against la-

belling the data summary as feedback. Participants in this condition noted, “The feedback did not

help much with strategizing, but it did make me want to get better scores.” and “The feedback

didn’t seem like feedback, because there was no suggestions. The feedback ... was just the numbers

that we scored.” These findings show that both the content and the delivery of feedback matters.

Many of the studies discussed in Chapter 2 implemented feedback similar to our baseline condi-

tion in the form of summary metrics. This feedback may be effective by providing learners with

more information about their performance, but this depends on the learner to be able to interpret

and devise new strategies based on their data. Truly formative feedback should help the learner

interpret their data and act on it in future practice.

Participants receiving multimodal feedback were more likely to achieve a safe landing com-

pared to the baseline condition. This could be due to how the multimodal feedback was personalized

to address the learner’s greatest area of improvement, while the summary statistics in the base-

line condition remained the same regardless of performance. For example, one participant in the

multimodal feedback condition said, “The feedback helped tremendously by showing the exact lo-

cation the unnecessary movements where at.” Additionally, the format of the formative feedback

may have encouraged participants to experiment with new control strategies. Another participant

noted, “The feedback helped me feel more confident in the adjustments I was making and to try

new approaches.”
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Finally, participants in the multimodal feedback condition improved more than the text

feedback condition by achieving more safe landings in the second half of the experiment compared to

the first half. This may be due to additional information provided by the annotated trajectory in the

multimodal feedback condition. With the annotated trajectory, participants can pair general ideas

presented in the text with a concrete emphasis on a particular area highlighted on the trajectory.

In both conditions, participants noted that the feedback did not give specific enough strategies

to improve performance. One participant in the text feedback condition noted, “It asked me to

consider how changing it “might” be more effective but not exactly how (try using the W key more

often to keep the drone up longer, for example).”

These observations highlight an area to improve the feedback prompt template. When de-

signing the feedback, we prompted the model to use actionable suggestions related to the throttle

and rotation of the quadrotor. While these terms are specific to quadrotors and other aircraft, they

did not tell the learner exactly what to do (e.g. what buttons to push and how) to perform better in

this particular simulation environment. This suggests feedback can be actionable on several levels,

depending on the complexity of the task one is learning.

6.3.11 Emerging Themes

The results from this study illuminate a need to consider how to adapt feedback beyond

the most recent trial. For example, the approach presented here does not consider persistent skill

gaps that appear over several trials. One participant in the text feedback condition wrote, “I wish

the feedback generated built on the performance in prior trials so the feedback could say you’ve

improved! instead of you need to be better at the same thing... even though you actually did improve

compared to the last trial.”

Additionally, we can use different feedback strategies depending on the overall task perfor-

mance; high-performing individuals may only need to reinforce their successful control strategies

while novices may need more structured and specific feedback presented in this study. Several

participants noted frustration when receiving feedback after a successful landing. One participant
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in the text feedback condition noted, “It is a little discouraging to finally make a successful landing,

and then get a yeah, you did it - but you should focus on doing it better.”

Future work should also consider how to schedule feedback over time. Several participants

reported ignoring the feedback as the trial progressed, especially if they were consistently perform-

ing well on the task. A participant receiving multimodal feedback wrote, “After finding the fastest

way of landing the drone, I did not follow any more suggestions.” Additionally, participants also

reported needing time to independently explore the dynamics of the task before receiving perfor-

mance feedback. A participant in the text feedback condition reported, “It would benefit me to

go straight into the next trial so I can continue to make small adjustments back to back... Half of

learning is trial and error.”

Recent work discusses how prompt-based generative feedback methods are ideal for quickly

prototyping and testing feedback templates [79]. Future works can investigate using simple rules

to determine what feedback template to generate. How to adjust the timing of formative feedback

based on the number of attempts and performance outcomes remains an open question.

As automated training systems continue to develop, it is important to consider their place

among other workplace programs. It is likely we will need to balance automated approaches with

more traditional one-on-one training [70]; in addition to learning technical skills, training programs

will need to consider the social aspects of learning such as developing a community of practice within

an organization [97]. As required workplace skills and knowledge continue to develop over time,

training systems will need to both provide initial background knowledge and additional support to

help workers remain up-to-date [111].

6.3.12 Study Limitations

This work is limited in several ways. First, the quadrotor landing task did not change between

trials. This means that when participants found a control strategy that yielded a successful result,

they tended to repeat the same strategy. Future works may wish to randomize the starting point

of the drone in the simulation to provide more insight about if participants are learning strategies
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that transfer to other landing scenarios.

The other main limitation of this study is the online nature of the data collection. While

the Prolific platform allowed us to quickly recruit a large sample of participants, we were not able

to observe nuanced reactions to the feedback they received. Future work can pair crowd-sourced

methods with in-person studies to understand how participants choose to integrate feedback into

their learning process.

6.4 Conclusions

In this chapter, we motivated and then developed an ATS for a simulated quadrotor landing

task. The system first assesses performance based on temporal logic specifications, which require

no prior data to learn and can be flexibly adapted to new tasks and situations. Using these assess-

ment results, we automatically generated multimodal feedback adhering to principles of effective

formative feedback. While participants in all conditions reported finding the feedback engaging

and motivating, they differed in their ratings of how actionable and manageable the feedback was.

Since the goal of a training system is to help learners master a new task, we also considered learn-

ing differences between conditions. We found that participants receiving multimodal feedback were

more likely to achieve a safe landing. They also improved more over the course of the experiment

by increasing their safe landings more compared to other feedback conditions. Based on these

results, we identified future opportunities to further adapt feedback over time and consider the

learner’s affective state when delivering feedback. While future work in psychomotor task training

will continue to depend on domain-specific methods and knowledge, we encourage researchers to

align their methods with established pedagogical theories of learning and feedback.
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Figure 6.2: Unity-based Drone piloting simulator.

(a) Participant 5, Trial 1

(b) Participant 3, Trial 2

Figure 6.3: Example user trajectories. The vertical position (in meters) is plotted over time (in
seconds). The red vertical lines indicate the transition between task segments.
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Figure 6.4: Screenshot of the starting configuration of the quadrotor landing task.
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(a) Baseline feedback condition

(b) Text feedback condition

(c) Multimodal feedback condition

Figure 6.5: Examples of the three feedback conditions used in the experiment.
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(a) Distribution of responses for actionable feedback dimension: “The feedback sug-
gestions were actionable.”

(b) Distribution of responses for manageable feedback dimension: “How much infor-
mation did the feedback give?”

Figure 6.6: Distributions of responses for feedback dimensions that were significantly different
between groups. We show the responses collapsed to a three-point likert scale.



Chapter 7

Discussion

7.1 Assessing the Adaptive Training Systems Framework

In Chapter 3 I introduced a framework for developing Adaptive Training Systems (ATS)

based on previous work in Intelligent Tutoring Systems (ITS). The framework incorporates four

key modules (task attempt, assessment, feedback, and task generation) into an iterative cycle

that adapts to the learner’s demonstrated skill level. Chapters 5 and 6 demonstrate the utility

of symbolic methods for automatic assessment and integrate this assessment with Large Language

Model-generated natural language feedback.

The main strengths of the work presented here are that the methods used are explainable

and highly modular. The risk models in Chapter 5 provide personalized parameters that describe

driver behavior and their relative adherence to the task requirements. For new task requirements

or new domains, it is simple to swap out individual risk model parameters without interrupting

the rest of the assessment pipeline. Additionally, the robustness metric in Chapter 6 is simple

to interpret and new task specifications can readily be incorporated into the assessment module.

The assessment and feedback methods used here are largely independent as well; we can generate

feedback using information from the risk models or use a different feedback mechanism without

impacting the assessment methods. This approach allows system designers to select what methods

work best for their specific domain.

The work in this dissertation is limited in several aspects. The first limitation is our evaluation

platforms. In both the driving and piloting domains, we assessed our methods in a simulated
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environment. Simulation provides many benefits, such as controlling external variables and allowing

more potential data streams. However, this approach loses some task fidelity and may limit the

generalizability of the training to real scenarios. The second limitation is the difficulty of obtaining

ground-truth estimates for psychomotor skills. Similar to assessing knowledge in ITS, there are a

variety of reasons a learner may perform poorly at a task; they may not understand the requirements

of the task, they may not understand the dynamics of the controls, or they do not have the motor

control to adequately complete the task. We need to continue developing assessment methods that

can distinguish between failure modes in order to provide accurate and effective feedback.

7.2 Revisiting Principles and Best Practices

In addition to those introduced in Section 3.4, I propose two new principles that are meant to

improve the scalability and accessibility of ATS. First, ATS should have a low barrier to entry. In

particular, training systems should consider using affordable off-the-shelf platforms when possible.

Technologies such as virtual reality headsets are affordable to many consumers and can provide a

realistic training environment when paired with common controllers such as video game joysticks.

Using affordable and easily accessible technologies will allow more people to access training resources

and can provide career mobility.

Second, ATS should have development interfaces for non-technical experts. As ATS become

more prevalent and integrated into industrial training pipelines, the role of system designer is likely

to fall to task experts without extensive computational knowledge. For example, an expert drone

pilot specializing in search and rescue operations will be able to outline key learning objectives and

develop training task examples; it is unlikely they will be versed in the convex optimization and

logical task specification methods we use in this dissertation. Recent work has begun to explore how

to iteratively develop temporal logic task specifications using natural language [57, 34]. Interfaces

like these remove unnecessary implementation challenges and empower domain experts to actively

engage in the design process.
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7.3 Future Work

The studies presented in this dissertation highlight opportunities to improve ATS in the

future. Most importantly, ATS need to consider long-term system adaptability. In this work, we

do not consider how a driver’s risk model changes over time or how drone pilots have different

feedback needs based on their experience. For example, in Chapter 6 we found that pilots tended

to ignore formative feedback once they achieved a certain level of confidence in the landing task. To

address this, the pedagogical and curriculum policies in ATS should include monitoring over several

task attempts and even over several training sessions. New methods are needed to computationally

identify persistent skill gaps and adjust the training process accordingly.

Future work should also consider a more holistic model of the learner. For instance, the

work here does not directly model or consider the affective experience of the learner. While we did

design the formative feedback in Chapter 6 to include encouragement and positive support, this

fixed feedback template does not directly acknowledge the frustration pilots may feel when they fail

the task. Similarly, our driver assessment approach in Chapter 5 does not consider how changes

in environmental conditions (e.g., time of day, room temperature) may impact driving preferences

and behaviors. These factors will also change over time, underscoring the need for flexible and

adaptive long-term modeling approaches.

Finally, work in adaptive task generation is a largely unexplored topic in ATS. For ITS,

some work has been done to procedurally generate mathematics problems and their corresponding

solutions [62]. For psychomotor tasks, we can take inspiration from procedural content generation

in video games; work in this area has focused on generating new game levels that are guaranteed

to be playable and adapt to a player’s skill level [145]. We can pair these methods with the domain

model of the training task to create training tasks that target a specific skill [8, 162].



Chapter 8

Conclusion

The rise of advanced machine learning and artificial intelligence methods presents an exciting

opportunity to personalize classroom learning and workforce training. The work presented in

this dissertation was motivated by the need for timely formative feedback that adapts to the

learner’s immediate actions. Specifically, this dissertation addresses this gap by pairing automated

assessment from signal temporal logic (STL) task specifications with natural language feedback

from a generative language model.

Using a driving domain and a drone teleoperation domain, we showed that STL specifications

provide a flexible, generalizable, and interpretable framework for defining and assessing human-

robot interaction (HRI) tasks. Compared to previous methods, the approach presented in this

dissertation does not require extensive data to train and can easily be adapted to new domains and

tasks. By pairing this assessment with a generative language model, we were able to personalize

feedback for learners using principles of effective formative feedback. I discuss findings from the

individual studies below in more detail.

In this Chapter 3, I proposed a framework for developing Adaptive Training Systems (ATS)

to support HRI tasks. This framework builds on foundational work in Intelligent Tutoring Systems

(ITS) and acknowledges the training challenges unique to HRI contexts. Namely, the automated

modules for assessment, feedback, and task generation need to be flexible enough to transfer to new

tasks with minimal training data and should embrace the nuance in performance that comes with

evaluating psychomotor tasks. Along with the framework, I discuss best practices and guidelines
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for designing ATS.

I then demonstrated how these principles can be applied to two different domains targeting

psychomotor skills. In Chapter 5, we focused on the assessment module of the training framework.

We defined multiple competing objectives in a driving simulator task using risk field models. The

risk field model learned individual parameters for how well each driver adhered to the task objec-

tives. We were then able to reliably predict the driver’s future driving trajectory. Additionally,

we could estimate the driver’s situation awareness by predicting whether they were aware of an

upcoming obstacle.

The work in this chapter provides a first glimpse of the utility for using STL as an assessment

tool for HRI tasks. Using task specifications, we can monitor learner performance either over a

subset of specific task components or the task as a whole. Additionally, the risk framework presented

in this chapter provides a personalized, generative model of learner behavior that can be integrated

into future feedback and intervention systems.

In Chapter 6, we developed automated assessment and feedback modules in a quadrotor

drone piloting domain. We again defined task objectives using STL specifications, which are easy

to define and simple to programmatically evaluate. Using these specifications, we calculated how

robustly the drone pilot adhered to the task objectives. The feedback module selected the skill area

the pilot needed the most improvement in and generated text and image feedback using principles

of formative feedback. We found the drone pilots positively perceived the generated feedback and

their performance improved more than pilots receiving other forms of feedback.

The main contribution of this chapter is an end-to-end training system that provides per-

sonalized formative feedback on a drone landing task using automated assessment from STL task

specifications. This framework enables us to systematically test different feedback mechanisms to

understand their efficacy in training. For example, the feedback presented in this chapter used

formative feedback, which emphasizes motivation; however, future work can compare how well this

feedback compares to other types of scaffolding or different social presentations.

The work in these two domains shows how portions of the framework can work together
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to accurately model the learner and provide useful performance feedback. The methods used in

these two domains emphasize the design principles I introduced in Chapter 3. For example, the

feedback presented to pilots was based on pedagogical theory of formative feedback. In addition,

the assessment and feedback methods presented here are highly modular; it would be a very simple

task to swap out feedback templates or introduce a new assessment metric to replace the robustness

values. Future work can continue to refine these principles and introduce alternate methods as new

computational approaches emerge. By adopting a systematic approach to design, we have the

chance to revolutionize how we train the future workforce and confidently adapt to technologies

that do not yet exist.
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C. D. Prediction in MOOCs: A Review and Future Research Directions. IEEE Transactions
on Learning Technologies 12, 3 (2019), 384–401.
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Augmented Reality for Supporting Workers in Human–Robot Collaboration. MTI 7, 4 (Apr.
2023), 40.

[116] Mukherjee, A. A., Raj, A., and Aggarwal, S. Identification of barriers and their
mitigation strategies for industry 5.0 implementation in emerging economies. International
Journal of Production Economics 257 (2023), 108770.

[117] Munir, S., Stankovic, J. A., Liang, C. J. M., and Lin, S. Cyber physical system chal-
lenges for human-in-the-loop control. In 8th International Workshop on Feedback Computing
(2013).

[118] Narvekar, S., and Stone, P. Learning Curriculum Policies for Reinforcement Learning.
In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems (Richland, SC, May 2019), AAMAS ’19, International Foundation for Autonomous
Agents and Multiagent Systems, pp. 25–33.

[119] Ng, A. Y., and Russell, S. Algorithms for inverse reinforcement learning. In Proc.
International Conf. on Machine Learning (ICML) (2000), Morgan Kaufmann, pp. 663–670.

[120] Nicholls, D., Sweet, L., and Hyett, J. Psychomotor skills in medical ultrasound
imaging. Journal of Ultrasound in Medicine 33, 8 (2014), 1349–1352.

[121] Olney, A. M., Samei, B., Donnelly, P. J., and D’Mello, S. K. Assessing the Dialogic
Properties of Classroom Discourse: Proportion Models for Imbalanced Classes. In Proceedings
of the 10th International Conference on Educational Data Mining (2017), pp. 162–167.

[122] OpenAI. GPT-4V(ision) technical work and authors, 2023.

[123] Ortiz, A. C. Capturing, Modelling, Analyzing and providing Feedback in Martial Arts
with Artificial Intelligence to support Psychomotor Learning Activities. Master’s thesis,
Universidad Nacional de Educación a Distancia, 2020.



103

[124] Ozkan, M. F., Rocque, A. J., and Ma, Y. Inverse reinforcement learning based stochastic
driver behavior learning. CoRR (2021).

[125] Pakdamanian, E., Sheng, S., Baee, S., Heo, S., Kraus, S., and Feng, L. DeepTake:
Prediction of Driver Takeover Behavior using Multimodal Data. In CHI Conference on Human
Factors in Computing Systems (CHI ’21) (January 2021).

[126] Pardos, Z. A., Bergner, Y., Seaton, D. T., and Pritchard, D. E. Adapting Bayesian
knowledge tracing to a massive open online course in edX. Proceedings of the 6th International
Conference on Educational Data Mining, EDM 2013 (2013).

[127] Pardos, Z. A., Gowda, S. M., Baker, R. S., and Heffernan, N. T. The sum is
greater than the parts: ensembling models of student knowledge in educational software.
ACM SIGKDD Explorations Newsletter 13, 2 (May 2012), 37.

[128] Pardos, Z. A., and Heffernan, N. T. KT-IDEM: Introducing Item Difficulty to the
Knowledge Tracing Model. In International Conference on User Modeling, Adaptation, and
Personalization (Berlin, Heidelberg, 2011), J. A. Konstan, R. Conejo, J. L. Marzo, and
N. Oliver, Eds., Springer Berlin Heidelberg, pp. 243–254.

[129] Pardos, Z. A., Heffernan, N. T., Anderson, B. S., and Heffernan, C. L. Using
Fine-Grained Skill Models to Fit Student Performance with Bayesian Networks. CRC Press,
Oct. 2010.

[130] Pavlik, P. I., Cen, H., and Koedinger, K. R. Performance Factors Analysis –
A New Alternative to Knowledge Tracing. In Proceedings of the 2009 Conference on
Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge
Representation to Affective Modelling (NLD, 2009), IOS Press, pp. 531–538.

[131] Pekrun, R. Emotion and Achievement During Adolescence. Child Development Perspectives
11, 3 (2017), 215–221.
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[139] Pérez-Raḿırez, M., Ontiveros-Hernández, N. J., Ochoa-Ort́ız, C. A.,
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