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Abstract—In human-robot teaming, live and effective commu-
nication is of critical importance for maintaining coordination
and improving task fluency, especially in uncertain environments.
Poor communication between teammates can foster doubt and
misunderstanding, and lead to task failures. In previous work,
we explored the idea of visually communicating notions of
environmental uncertainty alongside robot-generated suggestions
through augmented reality (AR) interfaces in a human-robot
teaming setting. We introduced two complementary modalities of
visual guidance: prescriptive guidance (visualizing recommended
actions), and descriptive guidance (visualizing state space in-
formation to aid in decision-making), along with an algorithm
to generate and utilize these modalities in partially-observable
multi-agent collaborative tasks. We compared these modalities
in a human subjects study, where we showed the ability of
this combined guidance to improve trust, interpretability, perfor-
mance, and human teammate independence. In this new work,
we synthesize key takeaways from that study, leveraging them
to describe remaining open challenges for live communication
for human-robot teaming under uncertainty, and propose a set
of approaches to address them via a collection of explainable AI
techniques such as visual counterfactual explanations, predictable
and explicable planning, and robot-generated justifications.

Index Terms—Human-Robot Collaboration, Explainable AI,
Augmented Reality, Reinforcement Learning, Counterfactual Ex-
planation, Shared Mental Models, Plan Justification

I. INTRODUCTION & MOTIVATION

In tasks involving teamwork across uncertain, changing
environments, communication quality can be the difference
between success and failure. This is especially relevant for
human-robot teams, where team members do not share any in-
herent common basis for communication. Autonomous agents
are well-equipped to operate in probabilistic state spaces,
gathering observations and choosing optimal actions in re-
sponse to new information. In order to contribute to enhanced
team performance however, we posit that these agents should
communicate this knowledge to human teammates, allowing
for a coordinated problem-solving strategy.
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Fig. 1. AR-based visual guidance modalities: prescriptive guidance, featuring
arrows and pins (left), descriptive guidance, featuring an environmental
heatmap (middle), and a combination of both guidance types (right) in an
experimental Minesweeper-inspired domain.

Consider a search task, where human and robot teammates
spread out to locate targets over a large environment. This
domain would be particularly well-suited to visual commu-
nication via augmented reality (AR) headset. Visual modal-
ities are well suited to convey pieces of information which
involve uncertainty or noise [7], and AR-based head-mounted
interfaces in particular have ergonomic advantages due to
their hands-free nature [16], allowing for rapid communication
with no need for user context switching [20], ideal for tasks
where humans need to traverse terrain under time pressure.
What’s more, AR’s ability to visualize in-situ meshes well
with the concept of explainable AI (xAI); multiple works
have utilized AR visualizations to illuminate the otherwise
opaque planning processes of both mobile robots and robotic
manufacturing arms in various teaming scenarios [25], [31],
[39]. Within xAI, visualization is a common modality for
presenting explanations to expose overconfidence in models
[1], visualize class boundaries [30], and aid AI experts in
debugging [19]. However, most of these techniques assume
a degree of AI expertise combined with domain-specific
knowledge [28], [29]; our aim was to leverage AR to design
user-friendly visual communication interfaces usable in live
human-robot teaming scenarios.

We explored the use of AR-based visual guidance for
human-robot teaming in our prior work introducing MARS
(Min-entropy Algorithm for Robot-supplied Suggestions) [35].



Fig. 2. Flowchart of the MARS algorithm’s operation in a stochastic
collaborative task with human and robotic teammates.

MARS consists of both an algorithm for multi-agent collabora-
tion under uncertainty, as well as a collection of AR guidance
interfaces for human teammates generated by that algorithm,
compared and contrasted via user study. In this paper, we first
summarize our findings from MARS regarding the design of
visual guidance systems. We then describe a set of remaining
open challenges for communication in human-robot teaming,
along with proposed approaches to address them.

II. SUMMARY OF MARS

In our prior work [35], we first introduced our planning
algorithm for uncertain environments, informing the genera-
tion of proactive visual recommendations. We also provided
characterizations of two complementary modalities of visual
guidance: prescriptive guidance (visualizing recommended
actions), and descriptive guidance (visualizing state space
information to aid in decision-making). We evaluated the
effectiveness of our algorithm and compared these different
modalities of AR-based guidance in a human subjects study
involving a collaborative, partially observable search task.

A. Algorithm

The core insight behind our algorithm is that environmental
uncertainty over task-relevant variables can be succinctly char-
acterized by a dynamically-updating probability mass function
(PMF), a common practice across a variety of search tasks
[13], [40], [41]. That PMF can serve as a shared utility
function common to all agents (both human and autonomous),
and can be communicated to human teammates as it changes in
response to autonomous agent observations, providing insight
into the agent’s policy. This PMF is utilized by two separate
Markov Decision Processes (MDPs); one for controlling au-
tonomous agents (MR) designed to minimize entropy across
the environment, and another for generating assistive guidance
for the human teammate (MH ) aimed at minimizing search
time. We solve both of these MDPs via online reinforcement
learning to get optimal policies for autonomous agents and

action recommendations for human teammates respectively,
continually updating the shared PMF as the basis for their
reward functions.

As shown in Figure 2, we modeled the broader turn-taking
interaction as follows: 1) the robot’s MDP MR is solved,
parametrized by the PMF, and actions are sent to all agents,
2) the robots take their actions, and 3) get new observations,
updating the PMF. 4) the updated PMF is used to solve for a
policy in the human’s MDP MH , and 5) the resulting PMF and
action recommendations from that policy are communicated to
the human, who 6) views the guidance via an AR interface
and takes an action, 7) leading to a new observation and
reward, updating the PMF once more. For more details on
the algorithmic formulation of MARS, reference Section 3 of
the original work [35].

B. Prescriptive & Descriptive Visual Guidance

Central to the contribution of MARS is a characterization of
two distinct visual guidance modalities, which were deployed
as AR interfaces and correspond to the two data products of
the algorithm. First is “prescriptive guidance”, the essence
of which is directly suggesting to a human teammate what
actions they should take next. For example, in tasks involving
physically navigating through space, movement suggestions
can be represented as holographic arrows projected onto the
ground, extending from the human’s current location to their
next suggested waypoint (Figure 1 Left). This type of guidance
is designed to be straightforward and require little mental effort
to follow. However, since the recommendations are presented
sans rationale, they require a degree of human trust in the
system.

The second modality is “descriptive guidance”, which pro-
vides state space information for human teammates to use to
inform their decision-making. For spatial navigation tasks, this
takes the form of the PMF visualized as a heatmap, projected
onto the environment itself, dividing the space into regions
and coloring each square according to its expected reward
(Figure 1 Center). In contrast to the more explicit prescriptive
guidance, the descriptive modality acts as a decision support
tool that empowers human teammates to plan by themselves,
trading higher cognitive load for increased flexibility and
transparency.

C. Experiment

We evaluated the utility of our visual guidance modalities
and the effectiveness of our algorithm through a human
subjects study using a 3D turn-based collaborative analogue
of the PC game Minesweeper, played using a HoloLens 2 AR
headset (Figure 1). We tasked a team consisting of a human
and a simulated drone with locating and defusing a number of
mines hidden throughout a grid of cardboard boxes projected
onto the floor of an experiment space. The drone is able to
autonomously navigate the environment, taking measurements
with a noisy sensor (false-positive rate: 10%, false-negative
rate: 1%) to attempt to determine whether a box contains a
hidden mine. The human must also physically navigate the



environment, spending turns to search boxes and defuse mines
whenever they think they’ve located one.

We conducted a 3 × 1 within-subjects study with each
condition varying the type of visual guidance given to the
human teammate by the drone: 1) prescriptive guidance, or
the ‘arrow’ condition, 2) descriptive guidance, or ‘heatmap’,
and 3) a combination of prescriptive and descriptive guidance,
or ‘combined’ (Figure 1).

D. Key Results

Through our user study, we tested five key hypotheses (three
subjective and two objective). The subjective hypotheses were
as follows: participants will find the guidance in the ‘com-
bined’ condition more trustworthy (H1.a), interpretable (H1.b),
and less stressful (H1.c) compared to the other guidance types.
H2 focused on performance, stating that participants will take
less time to solve the task in the ‘combined’ or ‘arrow’ condi-
tions compared with ‘heatmap’. H3 states that participants will
act with more independence and deviate more frequently from
the prescribed path in the ‘combined’ condition compared with
‘arrow’. To evaluate these hypotheses, we used a variety of
subjective, survey-based measures along with several objective
metrics (total moves, total time, time per move, and guidance
compliance rate). Section 5 of the original work [35] gives
more details as to the experiment setup and measures, while
Section 6 describes the results and analysis.

We found statistically significant support for hypotheses
H1.a (trustworthiness) and H1.b (interpretability) using sub-
jective scales, while lacking enough evidence to validate H1.c
(stress). We also validated H2 (performance) and H3 (indepen-
dence) via objective metrics. Exit interviews from participants
provided further evidence in support of the aforementioned
hypotheses. In summary, we found that combining visual
insights into environmental uncertainty (descriptive guidance)
with robot-provided action suggestions (prescriptive guidance)
improved trust, interpretability, and performance, and made
human collaborators more independent.

III. OPEN CHALLENGES & FUTURE APPROACHES

In this section, we summarize additional actionable take-
aways from our user study, synthesizing them into overarching
design goals for future visual guidance systems for human-
robot teaming, as well as provide an outline of proposed
approaches to address those goals, drawn from a collection
of xAI and AR-based visualization techniques.

Firstly, although prescriptive guidance is simple to follow
and frequently arises as a natural choice for navigation systems
(e.g., getting directions via Google Maps), it puts the human
user into a subconscious ‘automatic’ thinking pattern (also
known as system 1 thinking [23]). This pattern is inherently
restrictive, as it limits the user’s ability to react and adapt to
uncertain situations or sub-optimal system recommendations.
Descriptive guidance, on the other hand, forces users into
system 2 thinking, where they must actively plan ahead and
calculate their next actions. By combining these two visual
guidance approaches, human teammates have the capacity to

reduce their workload by leveraging the explicit prescriptive
guidance, while maintaining environmental awareness and
acting with greater independence when called for. However,
prior research has shown that users of guidance systems will
subconsciously shift towards system 1 thinking over time
as they observe the system performing reliably [8], [22].
Therefore, our first overarching design goal is to leverage
differing visual guidance types to properly calibrate system
1 and system 2 thinking in human teammates operating in
uncertain environments.

Secondly, in the ‘arrow’ condition, participants’ trust in
system suggestions was highly inconsistent; some over-trusted
the guidance (taking its suggestions to be inherently correct,
leading to Type I errors [9]), while some under-trusted it
(frequently ignoring the arrow in order to act more conser-
vatively, leading to Type II errors). These wildly differing
priors for perceived system reliability were highly dependent
on participants’ prior exposure to AI and robotics. Ideally,
we would want human teammates to accept high-quality ad-
vice (‘appropriate compliance’) and reject low-quality advice
(‘appropriate reliance’) [9], [14], which is challenging to
achieve when providing explicit recommendations. Our study
found evidence that presenting descriptive guidance alongside
prescriptive led to user trust settling somewhere in the middle
of the two extremes. This aligns with xAI findings suggesting
that system interpretability mitigates over- and under-trust
[6], [38], and that better understanding of system functioning
increases acceptance of system recommendations [32], [42].
Our second overarching design goal relates to this issue of trust
calibration; in stochastic environments with high uncertainty
of recommendations, visual guidance systems should have
the ability to communicate when advice is of high or low
confidence to appropriately steer user trust.

Considering these two design goals for future visual guid-
ance systems in human-robot teaming, we propose the follow-
ing approaches:

A1: Counterfactual Explanation. Counterfactual explana-
tion refers to a suite of techniques from xAI, where specific
changes to the inputs of known models are identified that
lead to changes in output classification in order to intuit a
causal link [24], [27]. Counterfactual questions are generally
posed with the form “Why did P happen rather than Q?” For
example, a counterfactual explanation in an image classifier
might read “This is an image of an alligator rather than of a
crocodile, because it has a rounded snout instead of a pointed
snout.” These techniques have the capacity to provide context
about internal model reasoning to users, leading to usefulness
for model debugging and failure recovery [4], [15], [26], [36].

Following our study, many participants noted that they
found it difficult to notice changes to the descriptive guidance
when the change did not occur in their field of view. These
participants suggested adding a feature alerting users whenever
the robot teammate discovers a new high confidence target, to
enable more informed decision making. When this happens,
it would be desirable to convey how this reward has changed,
which can be achieved through the use of counterfactual



Fig. 3. Prototype counterfactual alert in the Minesweeper domain. The
audio cue directs the user’s attention to point A and states the new reward
confidence, while the holographic visualization cycles between the left (old
reward) and right (new reward) images.

techniques. We propose using a combination of visual and
natural-language based counterfactuals to convey three pieces
of information in the event of significant feature changes in the
environment: 1) the spatial location of the reward change, 2)
how the reward has changed, and 3) the system’s confidence
in the reward change. The first two components are designed
to get users to pause and deliberate their plan, shifting from
system 1 to system 2 thinking. The third component helps
users assess the relevance of this new information and is aimed
at mitigating over- and under-trust.

Figure 3 showcases a prototype system design for conveying
counterfactual alerts to users in the Minesweeper domain. In
response to a new drone observation, a landmark pin labeled
A is introduced, indicating the spatial location of the reward
change. AR-based visualization allows for the creation of
features such as this out of thin air to quickly reference points
in physical space that would otherwise be difficult to describe.
To showcase how the reward has changed in response to
a new drone observation, the AR visualization cycles for a
period between Figure 3 Left (the old reward PMF value) and
Figure 3 Right (the new reward PMF value, now highlighted
in white). This cycling visualization is accompanied by a
natural language audio cue describing the reward change and
its associated confidence.

A2: Minimizing Cognitive Load. The next set of tech-
niques are aimed at minimizing the cognitive load of hu-
man teammates in navigation tasks. During our user study,
participants often encountered abrupt path changes as the
drone found higher reward paths, an emergent phenomenon
we dubbed ‘switchbacks’, a behavior that was overwhelmingly
viewed as confusing and unconfident. Participants expressed a
preference for more direct paths, desiring an explanation when
changes were necessary, echoing previous research findings
[2], [10], [34]. By reducing the frequency of these switch-
backs, minor losses in expected path optimality may be offset
by the associated reduction of workload, freeing up mental
capacity for long term planning, as well as improvement in
the perceived reliability and trust of the system.

Sudden path changes can be discouraged through the in-
troduction of a small negative reward for path plans that
substantially differ from the path of the previous time step,
enforcing a degree of plan explicability and predictability [43].
All else being equal, participants also preferred direct arrow
paths within the planning horizon, with minimal directional
changes, which can also be incentivized through a biasing
factor in the reward function. These approaches alleviate high-
frequency irritations experienced by human teammates, which
can add up over time. Of course, the change in expected
reward for a new path may outweigh the desire to maintain
predictability, in which case, justification may be necessary.

A3: Justification. If an abrupt change in prescriptive guid-
ance is indicated by new observations, it is essential that
systems justify this change to avoid losing the trust of their
human teammate. Faulty robots are perceived as less trustwor-
thy, but justification has been shown to mitigate the negative
impacts of perceived failure [3], [5]. Prior research has shown
that robots are perceived as more helpful, intelligent, and
trustworthy when they provide the underlying rationale of their
decision-making [12], [33]. In addition to these subjective
effects, justification offers a snapshot of an agent’s inner
workings, which users can leverage to gauge the validity
of recommended guidance and make well-informed decisions
[11].

By leveraging the counterfactual alerts described in A1 and
shown in Figure 3 to generate justifications, we can explain
to human teammates why they are seeing a sudden change
in their recommended path. We posit that tying these alerts
to path changes would be preferable to simply triggering the
explanations when rewards change. By strategically leveraging
system explanation as justification, only utilized during ac-
tionable changes in prescriptive guidance within the human’s
planning horizon, we can avoid saturation of explanation.
If explanations are overused, unintended consequences can
ensue, increasing workload and leading to habituation, as
repeated exposure to explanations reduces user responsiveness
to them [17], [18], [21], [37].

IV. CONCLUSION

In this work, we first synthesized select findings from
our prior work [35], which provided design considerations
informing AR-based visual communication for human-robot
teaming under uncertainty. These findings illustrated the value
of providing visual insights into environmental uncertainty
alongside robot-generated suggestions, to improve trust, inter-
pretability, performance, and human teammate independence.
We used those insights to characterize a set of remaining
open challenges for communication in human-robot teaming
in uncertain environments, and proposed a set of approaches
for addressing them, inspired by techniques in explainable AI.
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