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Abstract
Purpose of Review As robots become increasingly prevalent and capable, the complexity of roles and responsibilities
assigned to them as well as our expectations for them will increase in kind. For these autonomous systems to operate
safely and efficiently in human-populated environments, they will need to cooperate and coordinate with human teammates.
Mental models provide a formal mechanism for achieving fluent and effective teamwork during human–robot interaction by
enabling awareness between teammates and allowing for coordinated action.

Recent Findings Much recent research in human–robot interaction has made use of standardized and formalized mental
modeling techniques to great effect, allowing for a wider breadth of scenarios in which a robotic agent can act as an effective
and trustworthy teammate.

Summary This paper provides a structured overview of mental model theory and methodology as applied to human–robot
teaming. Also discussed are evaluation methods and metrics for various aspects of mental modeling during human–robot
interaction, as well as recent emerging applications and open challenges in the field.

Keywords Human-robot teaming · Mental models · Human-robot interaction · Theory of mind

Introduction

Traditionally, robots have worked separately from humans.
Even in potentially collaborative environments like manu-
facturing, industrial robots most often operate in physically
separated sections of the assembly floor. This work scheme
of rigidly divided responsibility and prohibited human–
robot interaction (HRI) prevails for reasons of safety and
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simplicity, but limits applications of these robots to strictly
defined, well-structured, repetitive tasks [1]. Advances in
autonomy are rapidly improving robots’ ability to inter-
act with, and even directly collaborate alongside, human
teammates, opening up a wide range of new and impactful
applications that leverage the unique skills of human and
robot alike [2–5].

A key aspect of effective and fluent teamwork among
humans is maintaining awareness of what teammates are
likely to do or need, so as to coordinate actions. Humans
tend to be adept at this task, and able to communicate plans
and preferences easily understandable by their teammates
[6]. Robots, however, do not have the benefit of human
intuition. They must instead rely on explicit mathematical
formalisms in order to approximate the mental states
of human teammates and plan accordingly. This work
focuses on characterizing recent work in developing these
formalisms, known as mental models. In the following
sections, we discuss the context and aims of mental model
research for human–robot teaming, as well as describe
and categorize the common methodologies, usage, and
evaluation of such techniques.
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Mental Models

Mental models, also referred to as mental representations
in psychology, are organized knowledge structures that
allow individuals to interact with their environment [7].
Although the mental model has been used as an explanatory
mechanism in a variety of disciplines over the years, its
root can be traced back to twentieth century psychology
and epistemology. In 1943, Kenneth Craik posited in his
seminal work that the mind provides a “small-scale model”
of reality, enabling us to predict events [8]. In essence,
mental models serve the crucial purpose of helping people
to describe, explain, and predict events in their environment
[9]. Since then, mental models have gained popularity in
the human factors community for their effectiveness in
eliciting and strengthening teamwork fluency for complex
task execution, such as in tactical military operations [10,
11]. Inspired by this success, several architectures for
HRI have since replicated this fluency and teamwork by
developing mental modeling techniques for robotic agents
that operate in human-populated environments.

In HRI literature, the concept of mental modeling is often
conflated or used interchangeably with another important
concept in developmental psychology: Theory of Mind
(ToM). To be capable of ToM simply denotes an ability
to attribute thought, desires, and intentions to others [12].
Theory of Mind is crucial for everyday human social
interactions (e.g., for analyzing, judging, and inferring
others’ behaviors), with evidence that typically developing
humans exhibit this capability by the age of 5 [13].
Accordingly, several architectures for human–robot teaming
in HRI incorporate aspects of a ToM for other agents
[14–19].

In general, mental models and ToM go hand in hand
during human–robot interaction, as a robot modeling other
agents is analogous to having an agent with a ToM capacity.
Furthermore, it leads to an interesting phenomenon during
human–robot teaming as humans also form a ToM directed
at their robot teammate. Therefore, mental modeling
enables a phenomenon where a robot may form a belief
over a human’s mental model of the robot. This meta-
modeling is defined as second-order mental modeling which
enables robots to estimate how a human’s mental model is
affected by its own behavior [20]. Thus, current work in
mental modeling for human–robot teaming can be broadly
classified into first-order (or standard) or second-order
mental models.

We can see how effective mental models correlate with
team functioning: team members predict what their team-
mates will do or need, facilitating the coordination of
actions. Prior studies in the human factors community
demonstrate a positive relationship between team perfor-
mance and similarity between the mental models of team

members [9, 21, 22]. This implies that shared understanding
of the team is a crucial factor of effective team perfor-
mance (i.e., team members should have a shared mental
model). Shared mental model (SMM) theory states that
team members should hold compatible mental models that
lead to common expectations for shared task execution to
avoid failure [23, 24]. To summarize, if a mental model
helps in describing, explaining, and predicting the behav-
ior of a system, a shared mental model serves the purpose
of describing, explaining, and predicting the behavior of a
team.

Mental Models in Human–Robot Teaming

Teamwork is the collaborative effect of a group’s effort
toward achieving a common goal [25]. In the mental
modeling literature, collaborative tasks are often broken
up into smaller submodels representing components of
effective teamwork, such as models of task procedures
and strategies, models of inter-member interaction and
information flow, or models of individual team member skill
and preferences [9].

These various types of mental models and their incor-
poration of shared knowledge in teams help in achieving
characteristic traits such as fluent behavior between team-
mates, quick adaptation to changing task demands, trust-
ing collaborators with roles and responsibilities, effective
communication, and decision making in time-critical appli-
cations. Several studies in human-robot collaboration have
attempted to elicit these positive qualities through the use
of mental models. In this section, we present a systematic
characterization of desirable traits which can be achieved
through mental modeling in human–robot teaming:

– Fluent behavior: Fluency, as defined by Hoffman, is a
“coordinated meshing of joint activities between mem-
bers of a well-synchronized team” [26•]. This quality
of interaction, collaborative fluency, intuitively means
human and robot are well synchronized in timing, and
they can alter plans and actions appropriately, and often
without much communication.

– Adaptability: During collaboration, plans change, and
team members (both human and robot) should be
able to alter their plans and actions appropriately and
dynamically as needed. Previous studies show that
shared or common mental models can be leveraged for
changing task demands for quick adaptation in a team
[23, 27•].

– Trust building: Trust is a critical element for the suc-
cess of a team. In human–robot interaction, studies
show that people trust a collaborative robot when they
can discern its role and responsibility, have confidence
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in its capabilities, and possess an accurate understand-
ing of its decision-making process (a shared mental
model) [28, 29].

– Effective communication: Information exchange,
either verbal or non verbal, is pivotal for collaboration.
A collaborative agent can leverage mental models to
warn its human teammate about potential failures or ask
for help when it is unable to complete a task [30, 31].

– Explainability: Knowledge sharing and expectation
matching also have importance for behavior explain-
ability [32–34]. The recent surge in popularity of
explainable AI (xAI) has shown the crucial importance
of agents’ ability to explain their decision-making pro-
cess, leading to improved transparency, trust, and team
performance.

Mental Model Methodologies

In this section, we discuss successful methods for mental
modeling in human-robot teaming contexts. We organize
the literature into three categories: first-order (or standard)
mental models, second-order mental models, and shared
mental models.

First-Order Mental Models

In first-order mental models, robots model the behavior of
human collaborators to infer their beliefs, intentions, and
goals, for the purpose of predicting their actions. Usually,
such modeling can be functionally broken down into two
steps which a framework must resolve: (1) the human’s
reward function (which motivates the human’s behavior in
the world), and (2) a planning algorithm which connects that
inferred reward function to robot behavior [35].

One of the simplest approaches is based on the principle
of rationality [36, 37]: the expectation that agents will
plan approximately rationally to achieve their goals, given
their beliefs about the world (i.e., they will take actions
that maximize their expected reward). One way to infer
a human’s reward function is to observe their behavior
through inverse reinforcement learning (IRL). For example,
the widely used maximum entropy IRL formulation
optimizes a model to fit a reward function that incentivizes
a human demonstrator’s actions exponentially more than
unobserved actions [38, 39].

A similar approach to inferring a human’s reward
function is through inverse planning. Baker et al. propose
a computational framework based on Bayesian inverse
planning for modeling human action understanding. They
modeled human decision making as rational probabilistic
planning with Markov decision processes (MDPs), and
inverted this relation using Bayes’ rule to infer agents’

beliefs and goals from their actions (running the principle of
rationality in reverse) [40, 41]. They were able to extend this
method to a Bayesian model of Theory of Mind (BToM),
which provides the predictive model of belief and desire-
dependent action (the ToM capacity of the collaborative
human) as a Partially Observable Markov Decision Process
(POMDP) [42], and reconstructs an agent’s joint belief state
and reward function using Bayesian inference based on
observations of the agent’s behavior [43, 44].

From a planning and decision-making point of view,
the noisy rational choice model (also known as Boltzmann
rational) [45, 46] is a popular method in robotics where
actions or trajectories are chosen in proportion to their
exponentiated reward. Here, it is assumed that the collabo-
rative agent has access to some underlying human reward
function (usually inferred through IRL or inverse plan-
ning approaches). The human is modeled to act rationally
with the highest probability, but with a non-zero probability
of behaving sub-optimally [20, 47–50].

Humans frequently deviate from rational behavior due
to specific biases such as time pressures, loss aversion,
and the like [51]. Furthermore, they are limited in cogni-
tive capacity, which leads to forgetfulness, limited planning
horizons, and false beliefs. Some recent methods attempt
to introduce these inconsistencies to the rational model
assumption [52]. Nikolaidis et al. gave a Bounded-Memory
Adaptation Model, which models humans as boundedly
rational and subject to memory and recency constraints,
through a probabilistic finite-state controller that captures
human adaptive behaviors [19]. Kwon et al. used a risk-
aware human model from behavioral economics (Cumula-
tive Prospect Theory) for modeling loss aversion behaviors
of humans under risk and uncertainty [53].

Another recent approach for human behavior modeling is
the Reward Augmentation and Repair through Explanation
(RARE) framework for estimating and improving a
collaborators’ task understanding. Here, Tabrez et al.
provided a computational framework for human reward
function estimation via a set of possible Hidden Markov
Models (HMMs) [30], representing a task’s reward function
and partially deficient variants (e.g., missing reward
information). The collaborative agent must infer the most
likely HMM for explaining the teammates’ behavior, which
in turn indicates a plausible underlying reward function for
explaining the human’s actions.

Second-Order Mental Models

The concept of a second-order mental model is related to
a recursive type of reasoning modeled by game theorists
(“I believe that you believe that I believe...”) which can
be extended to a possibly infinite reasoning process [54,
55]. The second-order mental model is one step deeper in
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behavior modeling (i.e., a robot forming a belief over a
human’s model of the robot). Second-order mental models
enable robots to possess more predictable and explicable
behavior, as the effects of their actions on another agent’s
perception of them are included in the model.

Work by Huang et al. modeled humans as learning
a robot’s objective function over time by observing its
behavior using Bayesian IRL, an inversion of typical IRL
paradigms where a robotic agent attempts to infer human
objective functions. To account for noisy learning behavior
from humans, the authors utilize approximate-inference
models. Using this insight, an agent can plan for actions
that communicate to the human so as to be maximally
informative, better enabling humans to anticipate what the
robot will do in novel situations [56].

Another approach that has shown promise is the Inter-
active POMDP (I-POMDP) framework, which modifies a
traditional single-agent POMDP to include other agents by
creating the notion of an interactive state. An interactive
state encapsulates both the environment state and the mod-
eled belief state attributed to another agent. Brooks and
Szafir use this I-POMDP framework [57] for performing
Bayesian inference of second-order mental models. They
estimate the human’s Q-function (a function that helps
determine the optimal action given an interactive state)
through IRL and use it to infer the human’s belief state
about the agent, by comparing it with the human’s actions
assuming a Boltzmann rational behavior model [20].

SharedMental Models

Shared mental models enable team members to draw on
their own well-structured common knowledge as a basis for
selecting actions that are consistent and coordinated with
those of their teammates. They are strongly correlated to
team performance [9]. In this section, we focus on methods
employed for establishing a shared understanding between
teammates.

One well-known approach in HRI inspired by SMM
is work on human–robot cross-training by Nikolaidis and
Shah, which focuses on computing a robot policy aligned
with human preference by iteratively switching roles
(between a human and a robot) to learn a shared plan for
a collaborative task [58]. Hadfield-Menell et al. approached
SMM as a value alignment problem, ensuring that the
agents behave in alignment with human values. They
utilize a cooperative inverse reinforcement learning (CIRL)
formulation, where a robot maximizes a human teammate’s
unknown reward in a cooperative, partial information game.
They show that solutions within this formalism result in
active teaching and active learning behaviors [59].

Nikolaidis et al. also propose a game-theoretic model
of a human’s partial adaptation to a robot teammate. This

method assumes the robot agent knows a “true” utility
function for the team, and the human is following a best-
response strategy to the robot action based on their own,
possibly incorrect reward function. The robot uses this
model to decide optimally between revealing information
to the human and choosing the best action given the
information that the human currently has [27•].

From these well-known models, we can see that
establishing a shared mental model requires communication
between agents (except the cross-training method, where
agents learn each other’s responsibilities by switching
roles). We can separate these communication strategies into
two categories: implicit (e.g., using movement or motion)
and explicit (e.g., verbal explanations).

Implicit communicative models. A popular principle in
motion planning for expressing intention to a collaborator is
the notion of legibility. Dragan et al. developed a formalism
to mathematically define and distinguish predictability
(predicting a trajectory given a known goal) and legibility
(predicting a goal given an observed trajectory) of motion
based on a rational action assumption for the collaborative
human [50]. Kulkarni et al. generate explicable robot
behavior by learning a regression model over plan distances
and mapping them to a labeling scheme used by a human
observer, minimizing divergence between the robot’s plan
and the plan expected by the human [60].

Another mode of implicit communication is through
gesture and non-verbal expression. One example of this
is work by Lee et al. which uses a BToM approach to
model dyadic storytelling interactions [61]. They propose
a method for a robot to influence and infer the mental
state of a child while telling it a story, specifically
estimating the child’s degree of attentiveness toward
the robot. They model emotion expression as a joint
process of estimating people’s beliefs through inference
inversion using a Dynamic Bayesian Network (DBN), and
subsequently produce nonverbal expressions (speaker cues)
to affect those beliefs (attention state).

Explicit communicative models. Model reconciliation
processes try to identify and resolve the model differences
of a collaborator through explanations, thereby establishing
a shared mental model. These processes lead to predictable
behavior from the collaborative agent: a consequence of
explainability [62–64]. Briggs and Scheutz’s recent work
provides a formal framework to correct false or missing
beliefs of collaborators in a transparent and human-like
manner by using adverbial cues, adhering to Grice’s maxims
[65] of effective conversational communication (quality,
quantity, and relevance) [66]. Additional recent works also
address the generation of these explanations, seeking output
that is optimal with respect to various quantitative and
qualitative criteria including selectivity, contrastiveness, and
succinctness [29, 67–69•].
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EvaluationMethods

In this section, we discuss evaluation methods employed
in human-robot teaming for each of the desirable traits
characterised in Section “Mental Models.”

Team Fluency Fluency, the metric for well-synchronized
meshing of joint actions between humans and robots, is
difficult to measure and optimize in practice [70]. Hoffman
and Breazeal demonstrated that fluency is a distinct
construct to efficiency through a user study involving
an anticipatory controller (when the robot anticipated
participants’ actions, task efficiency was not improved,
but participants’ sense of fluency was increased) [71]. For
team fluency, there exist a number of validated subjective
metric scales, as well as commonly used objective measures,
such as human and robot idle time, fraction of time spent
concurrently working between agents, and delay times
between one agent finishing a precursor task and another
agent resuming that task [26•].

Adaptability Shared mental models offer a mechanism for
adaptability: quick, on the fly strategy adjustments by a
team. As adaptability is intrinsically linked to performance,
a majority of measures are objective, often treating an adapt-
able controller as an independent variable to compare along-
side other controllers. Specific objective measures vary with
the formulation used, including mean reward accrued [27•]
and similarity metrics between human and robot notions of
“correct action sequence” in an evolving task [58]. Though
there is a notable lack of validated subjective measures for
agent adaptability in HRI, many studies utilize subjective
metric scales for correlated measures such as team fluency
and trustworthiness [26•, 58]. Nikolaidis et al. have addi-
tionally showed that accounting for individual differences
in humans’ willingness to adapt to a robot is positively
correlated with trust [19].

Team Trust Shared mental models promote trust and reli-
ability by alleviating uncertainty in roles, responsibilities,
and capabilities while working in a team. Lee and See pro-
posed a three-dimensional model wherein trust is influenced
by a person’s knowledge of what the robot is supposed to do
(purpose), how it functions (process), and its performance
[72]. Based on previous studies, robot performance is con-
sidered to be the most influential factor for trust [73], likely
due to the importance of the agent’s ability to meet expecta-
tions [74]. Other factors with positive relationships to trust
are minimizing system fault occurrence, system predictabil-
ity, and transparency [75]. Most subjective measures for
trust in HRI research are newly created to match individual
study requirements and lack the rigor in development and
validation available in standardized scales from the human

factors community. Some well-known standardized scales
with high potential for use in HRI to evaluate a user’s trust
perception of an agent are the HRI Trust Scale, Dyadic Trust
Scale (DTS), and Robotic Social Attributes Scale (RoSAS)
[75, 76].

Effective Communication Previous studies show that infor-
mation exchange and effective communication are impor-
tant for building trust between team members. These com-
munications can be verbal (explicit) or nonverbal (implicit),
as seen in Section “Mental Model Methodologies.” For
explicit models, the following qualities have been found
to be positively correlated with trust and teamwork: task-
related communications, contrastive explanations express-
ing model divergence, and user and context-dependent
information (such as providing technical information to an
expert, and accessible information to a lay-user) [77–79].
For implicit models, such as those aimed at plan legibility
and explicability, self-reported understanding of a robotic
agents’ behavior or goal is a common evaluation met-
ric. Additionally, subjective metrics are often crafted for
individual study requirements, aimed at uncovering related
traits like robot trustworthiness [50, 80, 81].

Explainability Explainability deals with the understanding
of the mechanisms by which a robot operates and the
ability to explain robots’ behavior or underlying logic [30,
68]. Existing works in explainable AI assess the effects
of explainability through self-reported understanding of the
agent behavior, successful task completions, system faults,
task completion time, number of irreparable mistakes,
and trust in automation. A survey by Walkotter et al.
described three categories of measures for evaluating the
effectiveness of explainable architectures (in descending
order of importance): (1) trust (willingness of users to
agree with robot decisions through a self-reported scale); (2)
robustness (failure avoidance during the interaction); and
(3) efficiency (how quickly tasks are completed) [82].

Emerging Fields and Discussion

Mental models have proven beneficial for many human-
robot teaming applications such as assistive and healthcare
robotics [4], social path planning and navigation [5], search
and rescue [2], and autonomous driving [53, 83]. In this
section, we describe a selection of more recent emerging use
cases of mental models in HRI.

Though robots have been fixtures in industrial appli-
cations since the 1970s [84], the factory of the future is
likely to utilize robots for a much broader range of tasks,
and in a much more collaborative manner, enabled in part
through the use of recent developments in mental models.
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Many of these potential robot tasks intrinsically require
operation in proximity to humans, raising issues of safety
and efficiency. Recent work by Unhelkar et al. provides
a framework for human-aware task and motion plan-
ning in shared-environment manufacturing [85]. Additional
research in this area focuses on the problem of task schedul-
ing for safely and effectively coordinating human and
robot agents in resource-constrained environments [86, 87].
Another recent development has been toward the generation
of supporting behavior for improving human collabora-
tors’ task performance. These supportive behaviors do not
directly contribute to a task but instead alleviate the cogni-
tive and kinematic burdens of a collaborating human (e.g.,
fetching tools or stabilizing objects during assembly) [62,
88].

Furthermore, developments in augmented reality (AR)
technology have shown promise for industrial HRI appli-
cations. AR represents a novel modality of model commu-
nication for human–robot collaboration, wherein details of
a robot’s plan or decision making process are visualized
and presented to a human teammate as holographic imagery
overlaid onto the robot itself, viewed through a head-
mounted display. Notable work in this area has focused
on visually conveying robotic motion intent during human-
robot teaming tasks with AR, both for robotic manufactur-
ing arms [89], and mobile robots [90], a technique which has
been shown to broadly increase objective measures of task
accuracy and efficiency, as well as subjective perceptions
of robot transparency and trustworthiness. Recent work has
explored the inclusion of human-to-robot communication
features on top of AR visualization, allowing human team-
mates to diagnose problems with and modify a robot’s plans
or internal models during collaboration [91, 92].

Behavior manipulation, also known as policy elicita-
tion, refers to a class of problems in human-robot teaming
wherein an agent must guide humans toward an optimal
policy (or away from potential failure states) in order to
successfully complete a task, either through implicit or
explicit communication [30, 69•, 93]. Consider an emer-
gency evacuation scenario, where an agent is tasked with
guiding people safely out of a building. The agent could
steer evacuees away from a possible hazardous state either
by blocking their path or by verbally updating their inter-
nal model (“fire in next hallway”) to encourage alternative,
less dangerous paths. Various challenges related to behavior
manipulation include accurately modeling human behav-
ior [30], leveraging human models to find failure modes
[94], and succinctly generating persuasive human intelligi-
ble semantic updates (or executing mitigating actions) [68].
This concept of behavior modeling has additionally been
extended to intelligent teaching or coaching for effective
personalized learning [95].

With the currently observed rate of increase in agents’
capability for social behavior and natural language gen-
eration, important problems surface regarding robot ethics
and norms [96, 97], particularly in cases of policy elici-
tation (manipulating the human in the hopes of achieving
some greater good). These behaviors and capabilities induce
perceptions of a moral and social agency in robots simi-
lar to human standards of morality [98]. In reality, such
actions/behaviors do not embody any maliciousness but
rather emerge due to necessity of situation and coopera-
tion. Some major challenges within this domain of prob-
lems include establishing moral norms during collaboration,
anticipating possible norm violations, attempting to prevent
them while executing, and if norms are eventually vio-
lated, taking mitigating actions to create transparency and
user awareness (such as providing justifiable explanations
communicating the robot’s decision-making processes or
capabilities) [99, 100].

As evidenced by the emerging application areas found
within human–robot teaming literature, mental models
continue to be developed and applied in novel ways.
Research in human–robot interaction is rapidly evolving
and expanding into new application areas, so this list is far
from exhaustive. In this survey, we have provided a general
overview of mental models as applied to human–robot
teaming: formalisms which have proven to be significantly
beneficial for fluent collaboration and cooperation between
teammates. As evident in this summary, there are many
exciting developments within this space, as well as many
open and challenging problems to drive future research.
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