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Abstract—Justification is an important facet of policy expla-
nation, a process for describing the behavior of an autonomous
system. In human-robot collaboration, an autonomous agent
can attempt to justify distinctly important decisions by offering
explanations as to why those decisions are right or reasonable,
leveraging a snapshot of its internal reasoning to do so. With-
out sufficient insight into a robot’s decision-making process, it
becomes challenging for users to trust or comply with those
important decisions, especially when they are viewed as confusing
or contrary to the user’s expectations (e.g., when decisions change
as new information is introduced to the agent’s decision-making
process). In this work we characterize the benefits of justifi-
cation within the context of decision-support during human-
robot teaming (i.e., agents giving recommendations to human
teammates). We introduce a formal framework using value of
information theory to strategically time justifications during
periods of misaligned expectations for greater effect. We also
characterize four different types of counterfactual justification
derived from established explainable AI literature and evaluate
them against each other in a human-subjects study involving
a collaborative, partially observable search task. Based on our
findings, we present takeaways on the effective use of different
types of justifications in human-robot teaming scenarios, to
improve user compliance and decision-making by strategically in-
fluencing human teammate thinking patterns. Finally, we present
an augmented reality system incorporating these findings into a
real-world decision-support system for human-robot teaming.

I. INTRODUCTION AND MOTIVATION

Many works in the explainable AI (xAI) literature have
illustrated the benefits of illuminating the black box of AI
decision-making for end users interacting with autonomous
and robotic agents [63, 25, 5]. Various xAI techniques facilitate
better transparency into collaborative robots’ choices, improv-
ing trust, interpretability, and user acceptance [8, 56, 17, 42].
However, if explanations are given at inopportune times with
poor context, they can produce the opposite effect [30].
Furthermore, different explanation content can have differing
effects on a human collaborator’s mental model, which can
impact their behavior [7, 40]. In this work, we hypothesize that
since human collaborators have limited cognitive bandwidth to
process explanations, it is best to time them strategically for
maximum impact on improving understanding and behavior.
We also propose that the content and manner in which the
explanations are given should be tailored to a collaborative
context to encourage the desired effect on a human teammate.
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Fig. 1: Top: a counterfactual policy-based justification pro-
vided by drones (blue diamonds) to the human in a collab-
orative 2D treasure hunting game. Bottom: a counterfactual
environment-based justification showing the relative percent-
ages of finding a target, provided by a drone (circled in red) in
an augmented reality navigation interface. Both justifications
are attempting to explain to a user why they should take a new
(colored) recommended path, rather than the old (gray) path.

In collaborative human-robot interaction tasks, accounting
for a human in a multi-agent planner is challenging due to the
innate unpredictability and opacity of the human’s decision-
making [51, 27]. Therefore, having a robotic teammate also act
as a decision support system for the human, suggesting actions
for the human to perform while itself working towards a shared
task, is helpful for alleviating this unpredictability [59, 57, 8,
54]. With this type of interaction, it is crucial that autonomous
agents justify their behavior or suggestions when they deviate
substantially from the human teammate’s expectations.

We define justifications in this context as explanations
timed appropriately to instances of expectation mismatch,
with the intent of convincing or influencing a human agent.
For example, in a human-robot collaboration scenario where
a robotic agent is providing navigation recommendations, a



sudden change in the recommended direction may appear
confusing and strange to the human teammate, and is likely
to be disregarded [59]. A justification (see Fig. 1 for exam-
ples) provided in this context serves to convince the human
teammate of the utility of the previously difficult to interpret
recommendation. Our work addresses two research questions:
1) When are such justifications most impactful and useful?
And 2) What information should be presented in justifications
to improve human teammate decision-making and behavior?

The core contributions of this work are as follows:
• A novel mathematical framework, informed by value of

information theory, to decide when a robot collaborator
should justify its recommendation to a human teammate,
validated by an expert-feedback case study for determin-
ing the utility of justification timing strategies.

• A methodological characterization of four different types
of justification, derived from established features in xAI
literature, along with a validation and analysis of these
justification types via an online human subjects study.

• A set of actionable design recommendations and im-
plementation strategies for the use of justifications in
human-robot interaction, taking into account differing
levels of human and robot decision-making competence,
along with an augmented reality interface showcasing
these design principles for practical applications.

II. BACKGROUND & RELATED WORK

Explainable AI and Human-Robot Interaction: Recent re-
search on shared mental models within human-robot collabora-
tion has shown the importance of explainability for enhancing
interaction efficiency, fluency, and safety [50, 58, 63]. This is
particularly relevant in the context of model reconciliation,
where mismatches in expectations can lead to catastrophic
failures [8, 7]. Explainable AI can help bridge the gap between
human and robotic agents by making complex models more
understandable, allowing for faster debugging and failure
recovery, ultimately improving joint performance [28, 45, 63].

As such, it is important for robotic agents to be able to
effectively communicate and explain their decision-making
rationale to human collaborators, with awareness of how
these explanations influence and affect team dynamics. More-
over, research has also shown that people trust autonomous
agents more when they convey their decision-making process
[66, 37]. Robots with this explanation-providing capability are
generally perceived to be more helpful and transparent [57].
Conlon et al. [10] show that when a robot provides a self-
assessing explanation, operator trust more appropriately aligns
with robot ability, leading to increased performance and trust.

Explanation Strategies: Research in two areas of explainable
AI are particularly relevant to explanation generation: methods
that explain how a learned model functions (explainable ML)
and methods that produce explainable agent behavior during
human-in-the-loop interaction [55]. Explainable ML methods
are often aimed at helping developers interpret complex clas-
sifiers by illustrating how individual parameters impact model
output. Popular techniques include local approximations like

SHAP [41], model-agnostic methods like LIME [45], and
visualizations like Grad-CAM [49].

Explainable behavior methods attempt to make the inten-
tions of robotic agents clearer to humans by improving metrics
like explicability [38], predictability [6], or legibility [18].
Research has demonstrated that people dislike inexplicable
behavior from robots, rating it as frustrating, and leading to
mistrust of the robot [63, 2]. Robot behavior that attempts
to align itself with human expectations often must sacrifice
optimality to achieve high explicability. In Tabrez et al. [59],
participants in a collaborative search scenario expressed a
preference for explanations from an autonomous agent when
its behavior was unexpected or confusing. These explanations,
provided they are contextualized properly to mismatches in
human and robot expectation, can serve as a bridge between
explicability and optimality: alleviating the negative effects of
inexplicable but optimal robot behavior, and building trust in
the system over time.

Explanations as Justification: This work focuses on the
strategic use of explanations as justification in human-robot
teaming. This involves timing explanations to an instance of
expectation mismatch between humans and robotic agents,
with the goal of influencing a human teammate. Correia et al.
[11] found that using justification as a recovery strategy for
robot failures can mitigate the negative perception of those
failures. Prior work has focused on using justification to
explain why a decision is good or bad, without necessarily
aiming to give an explanation of the decision-making process
[19, 57]. In this work, we introduce and analyze different types
of justifications aimed at addressing both of those goals.

III. DEFINITION OF APPLICATION DOMAIN

To ground and evaluate our contributions, we utilize a multi-
target search and retrieval problem as a representative human-
robot teaming application. This multi-goal, multi-agent plan-
ning domain includes agents with heterogeneous capabilities
operating under partial observability.

We utilize an experimental paradigm previously established
by Tabrez et al. [59], which assumes two distinct classes of
heterogeneous agents working toward a multi-objective task
(e.g., search and recovery): autonomous agents (information-
gathering agents that move through the environment and take
sensor observations) and human agents (interactive agents that
can directly affect the environment state with their actions
and complete objectives, such as collecting a sample) in a
partially observable domain. In this paradigm, humans serve
as interactive agents that receive action recommendations
from autonomous information-gathering agents that typically
have access to features the interactive agents cannot directly
perceive. The decision-making process for each class of agent
is codified by a separate Markov Decision Process (MDP):

• Autonomous agent MDP, Mr, is defined by the 4-tuple:
(Sr, Ar, Tr, Rr), where Sr is the set of states in the
MDP, Ar is the set available actions, Tr is a stochastic
transition function describing the model’s action-based



state transition dynamics, and Rr is the reward function
Rr : Sr ×Ar × Sr → R.

• Recommendations for human agents are generated using
an MDP model of the human Mh defined by a 4-tuple
(Sh, Ah, Th, Rh).

Environmental uncertainty over task-relevant variables (e.g.,
whether a location contains a buried sample) is characterized
by a dynamically-updating probability mass function (PMF).
This PMF serves as a shared utility function common to all
agents (both human and autonomous), and can be commu-
nicated to human teammates as it changes in response to
autonomous agent observations to provide insight into the
agent’s policy (additional detail provided in Section V-A).This
relationship can be seen in Fig. 2.

In the multi-target search task, the PMF is in essence
a heatmap representing the probability at each location for
finding a target. The autonomous agent MDP Mr generates
optimal moves for these information-gathering agents to at-
tempt to collapse the uncertainty of that PMF by locating
targets via sensor observations. Meanwhile, the human MDP
Mh generates recommendations for the human agent to follow
to achieve the task goals, constantly updating based on the
most recent PMF.

The novel justification framework evaluated by our ex-
periment was situated within the context of a human-drone
collaborative search task, an established evaluation domain
for decision support [59]. Fig. 2 shows the interaction flow
of the task. In this section, we will use the circled letters in
the diagram to walk through its implementation.

Fig. 2: The loop describing the human-drone interaction with
shared PMF in our domain. The Justification Framework, the
primary contribution of this work, is highlighted in green.

To start, drones solve for their next actions (a) using the
MDP Mr; in our domain each drone is assigned its own
segment of the environment to cover to ensure uniform search
coverage. As the drones take their actions (b), they observe
noisy sensor readings over the cells they fly over to attempt
to detect targets (c). Using these readings, the shared PMF
undergoes a Bayesian update. Next, the system calculates a
recommendation for the human using Mh (d). The system de-
termines whether a justification is needed, and if so, generates

one (e); the justification framework (the primary contribution
of this work) is described in detail in Sections IV and V. The
human’s next recommendation and optional justification are
sent to the human, who then takes their next action (f). Based
on the system’s observation of the human action, the PMF and
state is updated again (g), and the cycle returns to (a).

IV. JUSTIFICATION FRAMEWORK: TIMING

In this section, we address the question of “when” jus-
tification should be provided within human-robot teaming
scenarios, and present a novel framework for the timing of
justifications based on value of information theory. Throughout
this section, we focus on the use case where the collaborating
agent is acting as a decision support system, providing recom-
mendations to a human agent who can either comply with or
reject them.

A. Spectrum of Justification Timing Strategies

Prior work has shown that in collaborative human-robot
interaction, humans are highly influenced by the timing and
frequency of those interactions [30]. To examine the question
of when and how frequently justifications should be presented,
we start by anchoring the range of possible actions at the two
extremes: never justifying or always justifying.

There are two general criteria that would render a justi-
fication unnecessary within a human-robot collaboration. 1)
there are no actionable consequences stemming from the
recommendation to be justified, or 2) the robot’s recommenda-
tions are generally accepted and trusted without scrutiny [16].
In most adaptive autonomy use cases, the second criterion
is rarely met, especially in high uncertainty environments
[46, 59]. Prior research has found that whenever there is a
misalignment of expectations between human and autonomous
teammates, explanations are expected to be provided [59, 7].
These expectation mismatches can stem from a variety of
causes, including sudden changes in recommendation or a
recommendation based on environment data that is unknown to
the human [8]. Trust and reliance in these systems deteriorate
when they lack the capability to justify their recommendations
in the presence of such mismatches [11]. In these scenarios,
never justifying is undesirable.

On the other hand, always justifying is ill-suited for human-
agent collaboration. Prior research has shown that administer-
ing too many queries increases frustration and irritation in
users [4]. Justifying too frequently can lead to habituation,
as repeated explanations reduce user responsiveness to them
[61, 23, 24, 33]. Thus, always justifying is also undesirable.

B. Strategically Timing Justifications: Value of Information

Even though justifications have benefits, agents should pro-
vide them strategically to take advantage of them efficiently.
As there is a direct cost of increased workload and habituation
inherent to providing an explanation to users, justification
should only be made when the value exceeds the cost. We
utilize value of information (VOI) theory [32] to decide how
much value a specific justification may add.



Value of Information. VOI is typically used in autonomous
systems contexts to maximize the information that a system
can gather or observe by using a “pull” communication pattern,
where a requesting agent (usually an autonomous system)
formally weighs the cost to query a responding agent (usually
a human) to provide additional information [36].

However, as we are operating within the context of con-
veying an explanation to a human agent autonomously, we
adopt VOI in a “push” communication pattern, where an
information-providing agent (robot teammate) formally weighs
the cost to a receiving agent (a human) in parsing that
information, along with the cognitive burden of interrupting
their current task [4].

Justification Framework. Using the human MDP Mh de-
scribed in Section III, our framework constructs an optimal
policy for the human π∗

h. However, this optimal recommended
policy is not necessarily agreed upon by the human and
the autonomous agents since they may have differing reward
functions. Therefore it is necessary for the system to model
the human and estimate what their πh should be.

• π̂∗
h is a human’s optimal policy as derived from the

human’s own internal reward function R̂h and operating
using their world model M̂h. The notation ‘−̂−’ denotes
that the variable in question is derived from the human’s
internal model of the world, which is latent to the system
and must be estimated.

• π∗
h is the system’s optimal policy for the human derived

from Rh, the system’s model of the human’s reward
function and its model of the human MDP Mh. The
policy recommendation can change based on receiving
new information (e.g., new sensor readings).

When there is perfect synergy between the human and the
system (a shared mental model), these two policies will be
the same (π̂∗

h = π∗
h). However, the human’s and the system’s

understanding of the optimal policy will drift as the system
receives new information and makes updates to π∗

h while the
human makes potentially different choices while using out-of-
date information, leading to a mismatch in the mental model.

The human and the autonomous agent will have two sep-
arate understandings of the expected reward for following a
given policy starting from a state s:

• Eπ∗
h,s

(Rh) is the expected reward the system expects the
human to receive by following the recommended policy.

• E
π̂∗
h,s

(R̂h) is the expected reward the human expects to
receive by following their own policy.

Justification is needed when the autonomous agent’s rec-
ommendation appears unintuitive or confusing to a user. We
hypothesize that the two primary reasons for this confusion
are 1) an explicit mismatch in the expected reward, or 2) a
mismatch in the sequence of states that are expected to be
visited even in the case of identical expected reward.

The first contributor is the mismatch in expected reward and
is formalized as:

D = |Eπ∗
h,s

(Rh)− E
π̂∗
h,s

(R̂h)| (1)

Where D is a scalar representing the difference in the robot’s
expected reward and the human’s expected reward from
following their respective policies for the human agent. To
formalize the second contributor, it is useful to define two
possible trajectories for the human.

• ψh denotes the sequence of states the system thinks the
human should traverse, obtained from a rollout of π∗

h

starting from current state s.
• ψ̂h denotes the sequence of states the human thinks the

human should traverse, obtained from a rollout of π̂∗
h

starting from current state s.
The expected mismatch in path is defined as a distance

function between the two paths:

T = dist(ψ̂h − ψh) (2)

Here, T is a scalar representative of the difference between
the robot’s recommended path and the human’s expected path.
We define the value of a justification, V(J ), as a piecewise
linear filter with three components:

V (J ) = max


α ∗ D
β ∗ T
γ ∗ D + κ ∗ T

(3)

α, β, γ, and κ are tunable hyper-parameters. The first
component of Eq. 3 captures the mismatch in the expected
reward, the second captures the mismatch in the expected
path, and the third provides a more comprehensive filtering
criteria based on a linear combination of the two. The three
filters combine to create an expressive notion of the value of
a potential justification.

This justification to a user comes at a cost C(J ), which
is highly dependent on the particular task and mode of
communication, and should tuned separately per domain. A
justification should only be triggered if the expected benefit
to the user is higher than the justification cost.

V (J )− C(J ) > 0 (4)

In human-robot teaming scenarios, as the mismatch be-
tween the robot’s recommendation and human mental model
increases, the usefulness of the robot’s recommendations de-
crease. VOI can be used to determine the trade-off between
providing justification to bridge the gap and making the
recommendations more useful.

Additional Implementation Details. Here, we present addi-
tional details about how we applied this framework to our
domain. The value of a potential justification relies on the
human’s internal policy π̂∗

h and the system’s recommended
policy for the human π∗

h. Since the human’s internal policy is
latent from the perspective of the system, we infer the human’s
most likely reward function R̂h based on the information
they can observe, and derive their policy π̂∗

h assuming that
humans optimize expected reward given their current reward
knowledge: a common practice within inverse reinforcement
learning and preference learning literature [57, 47]. Since the



only reward information humans receive is communicated via
the robots, we update the human’s reward function R̂h and
resultant policy π̂∗

h whenever the robot provides a commu-
nicative update, using the reward content of that update as an
approximation of the human reward knowledge (i.e., using π∗

h

from the last recommendation received by the human, at a
previous timestep). The human’s desired path ψ̂h is estimated
using π∗

h from that previous timestep.
The specific implementation for our domain of the distance

function in Eq. 2 to find T uses an XOR of states in the
human’s expected path ψ̂h and the states in the new recom-
mended path ψh. Simply put, the difference function takes
into account states that are visited by one of the compared
trajectories, but not both. Prior research has shown that people
are more concerned by actions that are nearer to them [59, 43].
With that in mind, we weight differences higher the closer they
are to the human’s current location.

T =
∑

s′∈ψh⊕ψ̂h

γd(s
′,sh) (5)

The distance function is the sum of a tuned discount factor
γ raised to the Euclidean distance d(s′, sh) between a state s′

and the human’s current state sh (d(s′, sh)) for all states s′ in
the XOR set ψh ⊕ ψ̂h.

We combine the scalar state difference T with the scalar re-
ward difference D, as described in Eq. 1, and tune the relevant
hyperparameters in Eq. 3 to create an appropriate function for
the value of justification V (J ), justifying whenever it exceeds
the cost C(J ), tuned for our domain.

C. Justification Timing Case Study

We validate our VOI-based timing mechanism for offering
justifications through a within-subjects expert-feedback case
study (n=10) where participants (graduate students in the fields
of robotics and human-computer interaction) watched video of
three playthroughs of a treasure hunt game (shown in Fig.
1-top) with differing justification timing strategies. In this
partially observable maze-like domain, players must uncover
as many hidden treasures as possible in a limited number
of turns, aided by autonomous drone teammates who explore
the maze and provide continually updating recommendations
based on their noisy ‘treasure detector’ sensor readings.

The video paused periodically during trials at moments
where a justification (Fig. 1-top) could be offered. The experts
were asked at each pause how useful the addition of a
justification at that point in the game would be, on a scale
from 1 (not useful at all) to 5 (very useful), similar to Cruz
et al. [12].

Each 21-turn long playthrough utilized one of three timing
strategies, presented in a random order: justifying once every
turn (21 justifications), justifying at regular intervals of once
every four turns (5 justifications), or justifying based on
the proposed VOI-based mechanism (5 justifications). We
hypothesized that users would find strategically timed VOI

justifications to be more useful than constant or timed-interval
justifications.

As shown in Table I, we found that strategic justification led
to the highest average perceived usefulness rating, showing
that it is not only preferable to justify less frequently, but
also that the specific timing of justifications to periods of high
mismatch in expectations is preferable to a similarly infrequent
justification strategy.

Always Interval VOI-strategic
Usefulness Mean 2.34 2.74 4.16
Usefulness SD 1.47 1.31 0.74

TABLE I: Means and standard deviations of rated usefulness
of justification timing (on scale of 1-5) per timing strategy.

V. JUSTIFICATION FRAMEWORK: CONTENT

In this section, we investigate the content of effective
justification. Drawing from previous works in explainable
AI [48, 45, 1], we introduce four broad categorizations of
justifications using a 2x2 cross of environment-centric vs.
policy-centric and local vs. global.

The first axis of the 2x2 cross, environment-centric vs.
policy-centric, determines whether the justification is grounded
in features from the environment that influence the policy,
or features of the resultant policy itself. As an example, an
algorithm recommending a location for a new wind turbine
might provide the average wind speed at various prospective
locations as an environment-centric justification for those
locations. Alternatively, it could provide the expected power
produced in a year if a recommended location was chosen,
contrasted with the expected power produced if alternative
locations were chosen as a policy-centric justification.

The second axis, local vs. global, determines whether the
explanation is grounded in a localized, short-horizon context,
or a global, long-horizon context. While a local justification
may focus on the sub-goals and immediate rewards of a given
task, a global justification would give a broader overview of
the end goal of a domain.

All justifications in our framework are structured coun-
terfactually, comparing the recommendation expected by the
human, derived from a model of their own policy π̂∗

h, to
the current recommendation actually given to the human by
the robot derived from π∗

h. Counterfactual explanations are
broadly defined as answers to contrastive questions of the
form “Why did outcome P happen rather than outcome
Q? [62]” These explanations can be conveyed via natural
language or visually. Counterfactuals have shown usefulness
for model debugging and failure recovery, as these types of
explanations provide contextual information about a model’s
internal reasoning [22, 9, 60].

The following four proposed types of features used in
a justification vary along a spectrum of interpretability and
comprehension for its users [15].

C1. Environmental Features: These types of features provide
a sense of interpretability for users, as they get quick insight
into the robot’s decision-making rationale.



Fig. 3: The four types of characterized justifications, given
during the same gameplay scenario in the treasure hunt do-
main. Note that the percentages shown on the map in both
environment-based justifications involve alternating visually
between the old and new probabilities every 1.5 seconds. For
simplicity, only the old probabilities are shown for ‘environ-
ment local’ and the new probabilities for ‘environment global’
in this figure.

C2. Policy Features: These features lack in interpretability,
since they don’t provide any insight into the robot’s rationale,
but they are highly comprehensible, as the user can easily
compare the end results of the agent’s decision-making.

C3. Local Features: Humans are bounded by a limited cog-
nitive capacity [53], and tend to prioritize short-term rewards
in their own reasoning (e.g., Stanford marshmallow experiment
[43]). Therefore, local features provide a mix of short-sighted
interpretability and compliance characteristics.

C4. Global Features: Global features sacrifice precision for
high comprehensibility, succinctly conveying the robot’s long-
term policy with human-understandable explanations tied to
the success criteria of the task itself.

A. Framing Justifications for Search Tasks

We frame the four proposed justification types, built from
the 2x2 cross, in the context of a multi-target search task which
utilizes a dynamically updating probability mass function
(PMF) as the primary element of the feature space, a common
practice in search and rescue operations [20, 64, 65]. The PMF
is a discrete mapping of locations to the probability of a target
being found at the location. It is, in essence, a heatmap repre-
senting the likely locations of targets across the environment.
As information is gathered through environmental exploration,
the PMF is updated via Bayes’ Rule.

To estimate mental model divergence over time, the system
estimates the human’s policy π̂∗

h by using the last recom-
mendation given to the human by the robot π∗

h, taken from
a previous timestep. This leverages the assumption that the
human teammate’s mental model is aligned with the most
recent guidance they have received from the system, with

divergence occurring in the interval between justifications. To
repair this divergence, four types of justification can be used:

Environment-centric Global. This justification is conveyed
visually by converting the current PMF to a heatmap, with a
color gradient from white to red representing the likelihood
of finding a target at a particular location. Counterfactuals are
employed by cycling images between the PMF heatmap for
the previous guidance (an estimation of the features that led to
π̂∗
h), and the current PMF heatmap (the features that led to π∗

h)
at a regular frequency. The numerical probability of finding a
target for both the current recommended goal location and
the previously recommended goal location is overlaid onto
both the prior and current heatmap. This shows explicitly, in
numeric form, how the odds have changed to prioritize the
current recommendation over the previous one.

Environment-centric Local. This justification uses the
same visual representation of alternating between the current
and prior PMF as environment-centric Global, but instead of
showing the entire heatmap, only the heatmap values at the
specific goal locations of the current and previous recom-
mendations are shown, alongside the numerical probabilities
associated with those two locations.

Policy-centric Global. This justification is conveyed as
a natural language counterfactual, focusing on long term
rewards. For a multi-target, time-constrained search domain,
an example of this justification is “On average, following the
new path will result in X targets found overall, compared
to the old path at Y targets found.” This takes an abstract
concept of expected long-horizon reward and maps it to a
human understandable sentence. To estimate values X and
Y in our partially observable domain, we utilize a heuristic
combining the computed odds over the given recommendation
with the overall entropy of the PMF, which decreases over time
through exploration. This strategy can be employed for any
domain that uses a PMF-based goal likelihood formulation.

Policy-centric Local. This justification is also conveyed as
a natural language counterfactual, but focused on short-term
rewards. For example, our domain uses the form ”On average,
the new path will take X moves to find a target, compared to
the old path at Y moves.” The means of generating X and Y
in this case is simpler, as the reward can be more accurately
estimated over a fixed-horizon recommendation. It is simply
a case of mapping abstract reward to human understandable
output. Fig. 3 shows how these four justification types were
mapped to our treasure-hunt domain.

B. Hypotheses

H1: Objective Hypotheses
H1.a (Compliance): Participants will have higher compli-
ance with recommendations when given policy-based jus-
tifications, compared with environment-based justifications
and no justification, as policy-based justification utilizes ab-
straction and framing effects, resulting in a higher level of
persuasiveness[44].
H1.b (Performance): Participants will perform better in the
game when given policy-based justifications, compared with



environment-based justifications and no justification, as com-
pliance should correlate with performance given the relatively
high competence of the recommending system in our domain.
H1.c (Decision-making Time): Participants will take longer to
make decisions when given environment-based justifications,
compared with policy-based justifications and no justification,
as environment-based justification includes more contextual
information, which promotes active thinking patterns.
H2: Subjective Hypotheses
H2.a (Mental Load): Participants will report lower mental
load when given policy-based justifications, compared with
environment-based justifications, since environment-based jus-
tifications have more information to process, and compared
with no justification, as people tend to report higher workload
when interacting with systems behaving inexplicably [59].
H2.b (Trustworthiness): Participants will rate the system as
more trustworthy and reliable when given environment-based
justifications, compared with policy-based justifications and no
justification, as environment-based justification provides more
transparency and contextual information, which will result in
participants feeling like they understand the decision-making
process.
H2.c (Perceived Intelligence): Participants will rate the sys-
tem as more intelligent when given environment-based jus-
tifications, compared with policy-based justifications and no
justification, also due to the transparency into the decision-
making process provided by environment-based justifications.
H2.d (Justification Interpretability): Participants will rate
environment-based justifications as more interpretable, infor-
mative, and helpful for decision-making compared to policy-
based justifications, due to the extra information provided by
environment-based justifications.

VI. EXPERIMENTAL EVALUATION

We investigate the preceding hypotheses regarding the ef-
fects of different types of justification on participants through
an IRB-approved human-subjects study.

A. Experimental Design

We conducted a 5x1 between-subjects experiment using
Amazon Mechanical Turk to evaluate the four types of jus-
tifications introduced above, alongside a control condition
that did not include justifications, in the experimental domain
described in Section III (Fig. 1-top). The participants’ goal was
to explore a maze and find as many buried treasures as they
could in a limited number of turns. Participants were assisted
in their task by a team of autonomous drone teammates who
simultaneously explored the maze and provided constantly-
updating recommendations to the human based on their own
noisy sensor readings. The VOI-based framework for strategic
justification timing described in Section IV determined when
justifications should be provided to participants. The type
of justifications were determined by experimental condition:
‘global policy’, ‘local policy’, ‘global environment’, ‘local
environment’, or ‘no justification’ (control).

B. Rules of the Game

Participants played two rounds of the game with the goal
of digging up as many of the 25 treasures hidden throughout
an 18x27 maze grid as they could in a period of 60 turns.
Each turn, participants could choose either to move to any
available adjacent grid square, or to dig on the square they
currently occupied to earn one treasure if one was located
there. A team of AI-controlled drones explored the grid
autonomously, moving multiple tiles in a turn and taking
noisy treasure-detecting measurements of every tile flown over.
These readings were used to update both their PMF and the
guidance they provided to the participant. The guidance took
the form of a green line with an orange ’X’ at the end,
indicating where the drones thought the participant should dig
next (see Fig. 4), which participants could choose to follow or
not. Whenever a justification was triggered by our framework,
the prior path recommendation was shown in gray, with the
rest of the justification depending on condition (see Fig. 3).

Fig. 4: Drone guidance is shown as a path overlay and a textual
representation of the next suggested move.

C. Study Protocol

The experiment was run in several batches with randomly
determined condition, using Amazon Mechanical Turk to
crowd-source participants. High quality participants were tar-
geted by filtering for high numbers of previously approved
tasks on Mechanical Turk, as well as approval percentage.
Additionally, on top of the base compensation rate of $3, a
bonus of 5¢ per treasure found during the game was paid to
further incentivize participant effort towards high performance.

After providing informed consent, participants completed a
short pre-experiment demographic survey. After reading the
rules of the game, participants completed a short comprehen-
sion quiz and played a tutorial level to ensure they understood
their objective. Next, participants played the two rounds of the
game and completed a post-experiment survey which involved
a combination of Likert scale and free response questions.

D. Measurement

The pre-survey collected demographic information about
our participants. Out of 104 initial MTurk participants, we
removed 13 from data analysis for either failing to locate a
single treasure during the game or for repeatedly spending
excessive time inactive without inputting a move, indicating
lack of understanding of or concentration towards the game,
respectively. This left 91 participants (51 males, 37 females,
and 3 who did not specify gender) with ages ranging from
23 to 72 years old (M = 40.99;SD = 11.80). 39.6% of



participants reported working in a STEM field, and 69.2%
of participants reported having received a bachelor’s degree
or higher. 19 participants each ran the ‘global environment’
and ‘no justification’ conditions, 18 each ran the ‘global
policy’ and ‘local policy’ conditions, and 17 ran the ‘local
environment’ condition.

We collected a number of objective measures from partici-
pant gameplay, including:

• Targets Found: The total number of treasures discovered.
• Compliance Rate: The percentage of moves taken by

users that matched the recommendations provided by the
system.

• Compliance Rate During Justification: The percentage of
moves taken by users that matched the recommendations
provided by the system, on turns when justifications
were provided. Note that in the control condition ‘no
justification’, although justifications are never offered,
we still collect this measure by applying the same VOI-
timing algorithm but never acting on it.

• Time Per Move: The average time taken per move.
• Time Per Move During Justification: The average time

taken to make decisions when justifications were pro-
vided.

TABLE II: Subjective Scale Measure Items.

Trust (Cronbach’s α = 0.95)
1. I am confident in the system
2. The system is dependable
3. The system is reliable
4. I can trust the system
Justification Interpretabilty (Cronbach’s α = 0.94)
1. I found the justifications to be complete and understandable.
2. I was able to adapt better to the game due to the justifications provided.
3. I found the justifications to be sufficient for making decisions.
4. I found that the justifications were informative during the game.
5. The justifications were useful.
6. I understand why the system used specific information in its justifications.
7. I understood how the system arrives at its answer.
8. I understood the systems reasoning.
9. I could easily follow the justifications to arrive at a decision.
Workload (Cronbach’s α = 0.76)
1. How mentally demanding was the game?
2. How hurried or rushed was the pace of the game?
3. How hard did you have to work to accomplish your level of performance?
4. How insecure, discouraged, irritated, stressed, and annoyed were you
during the game?
Perceived Intelligence (Cronbach’s α = 0.92)
1. System is Competent
2. System is Knowledgeable
3. System is Intelligent
4. System is Sensible
Likert items are coded as 1 (Strongly Disagree) to 7 (Strongly Agree)

For subjective measures, we administered a post-experiment
questionnaire to participants after completing the treasure hunt
task. The questionnaire was developed using well-established
metrics from the fields of robotics and explainable AI, includ-
ing the Trust in Automation Survey [34], the Interpretability
and Decision-Making Surveys for XAI metrics [63, 31, 52],
the Stress and Workload (NASA-TLX) [26], and the Perceived
Intelligence (Godspeed Questionnaire) [3]. Participants were
asked to rate their opinions on the guidance provided by
the agent using 7-point Likert-scale items. Based on these

questionnaires, we identified four key concepts to validate our
hypothesis: Trust, Justification Interpretability, Workload, and
Perceived Intelligence.

To determine these constructs, we used principal component
analysis to extract latent factors from the above mentioned
scales and calculated the factor loading matrix using varimax
rotation. We identified items that could be combined to create
concept scales with a correlation cutoff point of r ≥ 0.6 to
the factor matrix [29] which resulted in the scales presented
in table II.

VII. RESULTS

A. Objective Analysis

To test our objective hypotheses, we analyzed the various
metrics collected during the game using a one-way analysis
of variance (ANOVA) with experimental condition as a fixed
effect. Post-hoc tests used Tukey’s HSD to control for Type I
errors in comparing results across each of the four justification
types and the control condition.

Our hypotheses expected between-conditions differences
to be more pronounced along the axis of policy-based vs.
environment-based features, compared with global vs. local
features. Hence, we conducted additional analysis using a one-
way ANOVA with bucketed results, comparing policy-based
justification vs. environment-based justification vs. no justi-
fication. Again, post-hoc significance was determined using
Tukey’s HSD. The means per condition and per bucket are
shown in Tables III and IV below.

Global

Policy

Local

Policy

Global

Env.

Local

Env.
None

Compliance Rate∗ 84.67%A 81.53% 70.65%B 75.48% 70.53%B

Compliance Rate

(During Justification)∗
56.46%A 54.50% 40.57%B 49.54% 48.52%

Targets Found∗ 9.28A 8.47A/B 7.00B/C 7.78 6.32C

Time per Move∗ 1.30sB 1.40s 2.01s 2.10sA 1.90s

Time per Move

(During Justification)∗
1.74sB 1.66sB 2.49s 3.39sA 1.85sB

TABLE III: Means for objective measures across all condi-
tions. Measures with ANOVA significance are indicated by *.
Post-hoc significance is shown using letters. Individual means
denoted by A are significantly higher than B/C or C. Likewise,
A/B is significantly higher than C.

The ANOVA revealed significant effects for both overall
compliance rate (F(4,86) = 3.98, p = 0.0052), and compliance
rate during justification (F(4,86) = 3.09, p = 0.020). Post-
hoc analysis for overall compliance rate with Tukey’s HSD
shows that participants complied significantly more in the
‘global policy’ condition compared to both the ‘no justifi-
cation’ condition (p = 0.019), and the ‘global environment’
condition (p = 0.020). Post-hoc analysis of compliance rate
during justification found a significantly higher compliance in
‘global policy’ compared to ‘global environment’ (p = 0.016).

Significance was likewise found in the ANOVA compar-
ing the policy-based, environment-based, and no justification



Policy Features Env Features None

Compliance Rate∗ 83.14%A 73.00%B 70.53%B

Compliance Rate

(During Justification)∗
55.51%A 44.93%B 48.52%

Targets Found∗ 8.89A 7.38B 6.32B

Time per Move∗ 1.35sB 2.06sA 1.90sA

Time per Move

(During Justification)*
1.70sB 2.93sA 1.85sB

TABLE IV: Means for objective measures across the three
condition buckets. Measures with ANOVA significance are
indicated by *. Individual means denoted by A demonstrated
post-hoc significance over means denoted B.

Fig. 5: Compliance rate by condition, with means and post-
hoc significance shown.

buckets for both overall compliance rate (F(2,88) = 7.19, p
= 0.0013), and compliance rate during justification (F(2,88) =
4.41, p = 0.015). Post-hoc analysis showed that overall compli-
ance rate was significantly higher for users with policy-based
justifications than those with environment-based justifications
(p = 0.0047), and those with no justification (p = 0.0062).
Post-hoc analysis of the compliance rate during justification
additionally showed a significant effect for policy-based over
environment-based justifications (p = 0.012). These results
serve to validate H1.a (compliance).

Since our experimental domain was associated with a high
degree of robot competence, performance in the game (number
of targets found) highly correlated with compliance with the
drones’ suggestions. Using Pearson’s correlation coefficient,
we verified this relationship (i.e., the more participants chose
to follow the guidance, the better they perform) (r(91) = 0.77,
p < 0.0001). The ANOVA showed a statistically significant
effect for number of targets found (F(4,86) = 4.77, p =
0.0016). Post-hoc analysis showed three significant effects.
Participants in ‘global policy’ found more targets than those in
‘no justification’ (p = 0.016), or in ‘global environment’ (p =
0.027). Additionally, those in ‘local policy’ found significantly
more targets on average compared to ‘none’ (p = 0.047).

The ANOVA per bucket also revealed significance (F(2,88)
= 8.46, p = 0.0004). Post-hoc analysis found that policy-

based justifications led to better user performance in the
game, compared with both no justification (p = 0.0005), and
environment-based justifications (p = 0.018). These results
serve to validate H1.b (performance).

The timing measures, related to the latent measure of
participant thinking load, had significant effects both for time
per move (F(4,86) = 3.71, p = 0.0078) and time per move
during justification (F(4,86) = 3.74, p = 0.0075). Post-hoc
analysis for time per move showed that participants in the
‘local environment’ condition took significantly more time to
take their moves compared to ‘global policy’ (p = 0.030), but
not significantly more time compared to ‘local policy’ (p =
0.089). Additionally, while there was no significant effect for
‘global environment’ taking longer on average than ‘global
policy’, further exploration may be merited in future work (p =
0.063). Post-hoc analysis for time per move during justification
showed three significant effects, with ‘local environment’
taking more time than ‘local policy’ (p = 0.016), ‘global
policy’ (p = 0.022), and ‘no justification’ (p = 0.033).

In the bucketed analysis of timing, the ANOVA showed
significance in both time per move (F(2,88) = 7.44, p =
0.0010), and time per move during justification (F(2,88) =
5.91, p = 0.0039). Post-hoc analysis of time per move showed
that, with environment-based justifications, participants took
significantly longer than with policy-based justifications (p =
0.0009). Interestingly, no justification similarly had a signif-
icant effect, taking longer than policy-based justifications (p
= 0.047). This shows that despite the added cost of attending
to justifications, participants were able to take their moves
faster on average in the policy-based justification conditions.
Similarly, post-hoc analysis of time per move during jus-
tification showed that environment-based justifications took
significantly higher time than both policy-based justifications
(p = 0.0049), and no justifications (p = 0.050). These results
serve to validate H1.c (decision-making time).

B. Subjective Analysis

We conducted similar analysis to test our subjective hy-
potheses, running one-way ANOVAs fixed by both experimen-
tal condition, as well as bucketed by the feature class seen dur-
ing justification (policy-based, environment-based, or no justi-
fication). Post-hoc significance was determined using Tukey’s
HSD. In the case of the scale for justification interpretabil-
ity, the Likert-scale questions asked referred specifically to
justifications, so was limited only to the four experimental
conditions that possessed justifications, excluding the control.

Of the 91 participants with usable gameplay data, an
additional five failed basic attention-check questions in the
survey. Post-hoc analysis of survey responses showed six
further outliers, with significantly lower internal consistency
among related survey question answers than other participants,
appearing more like random clicking than coherent responses.
Removal of those 11 participants left us with the surveys of
80 participants for subjective analysis.

There were no statistically significant differences on the
Workload scale, either in the ANOVA with experimental



Global

Policy

Local

Policy

Global

Env.

Local

Env.
None

Workload 3.40 3.67 4.05 3.63 4.24

Trust 4.15 3.94 5.23 4.80 4.87

Perceived

Intelligence
4.59 4.88 5.73 5.16 5.27

Justification

Interpretability*
4.32B 4.24B 5.40A 4.96 N/A

TABLE V: Means for subjective measures across all condi-
tions. Measures with ANOVA significance are indicated by
*. Individual means denoted by A demonstrated post-hoc
significance over means denoted B.

Policy Features Env Features None

Workload 3.53 3.85 4.24

Trust∗ 4.05B 5.03A 4.87

Perceived

Intelligence∗
4.73B 5.47A 5.27

Justification

Interpretability*
4.28B 5.20A N/A

TABLE VI: Means for subjective measures across all condi-
tions. Measures with ANOVA significance (or Student’s t-test
significance, in the case of Justification Interpretability) are
indicated by *. Individual means denoted by A demonstrated
post-hoc significance over means denoted B.

condition as its fixed effect or between the bucketed classes of
policy-based, environment-based, and no justification. There-
fore, the hypothesis H2.a (mental load) is inconclusive.

The condition-wise ANOVA of the Trust scale also did not
reveal a significant effect (F(4,75) = 2.33, p = 0.064), but the
bucketed ANOVA for Trust did reveal significance (F(2,77) =
4.29, p = 0.017). Post-hoc analysis with Tukey’s HSD revealed
that environment-based justifications were rated as signifi-
cantly more trustworthy than policy-based justifications (p =
0.019). However, no effect was found between environment-
based justification conditions and no justification, meaning this
result serves to partially validate H2.b (trustworthiness).

Likewise, while the per condition ANOVA of the Perceived
Intelligence scale was not significant (F(4,75) = 2.23, p
= 0.073), the feature-class bucketed ANOVA for Perceived
Intelligence was (F(2,77) = 3.30, p = 0.042). Post-hoc analysis
showed that the drone teammates using environment-based
justifications were rated as significantly more intelligent than
the drone teammates using policy-based justifications (p =
0.038). Again, no effect was found between environment-
based conditions and no justification, meaning this result
serves to partially validate H2.c (perceived intelligence).

Lastly among the subjective scales, the ANOVA for the
Justification Interpretability scale did reveal significance when

Fig. 6: Rated interpretability of justifications by condition,
with means and post-hoc significance shown.

fixed by experimental condition (F(3,59) = 3.94, p = 0.013).
Post-hoc analysis revealed that the justifications in the ‘global
environment’ condition were rated as significantly more inter-
pretable and informative when compared to the justifications
from both the ‘local policy’ condition (p = 0.023), and the
‘global policy’ condition (p = 0.035).

There was an additional significant effect for the data
bucketed by feature class for the Justification Interpretability
scale. Since this scale specifically compares justifications, the
‘no justification’ bucket is excluded from analysis, and the
data is compared using a simple one-tailed t test, where the
justifications from environment-based justification conditions
are rated as significantly more interpretable compared to
justifications from policy-based justification conditions (t(61)
= -3.35, p = 0.0007). These results serve to validate H2.d
(justification interpretability).

VIII. RECOMMENDATIONS & POTENTIAL APPLICATIONS

A. Recommendations for Justification Design

In this section, we summarize the main findings and impli-
cations drawn from the results of our user study on the utility
of justification in human-robot interaction.

1) High Robot Competence or Low Human Competence:
Use Policy-based Justifications: Policy features are highly
comprehensible to human teammates, as the information is
packaged such that users can compare the end results of the
robot’s decision making. The information is highly abstract,
and is framed taking the human teammate’s own utility into
account. There is little room to think critically about or ques-
tion the accuracy of policy-based counterfactual justifications,
which resulted in a high level of persuasiveness in our study
(we saw that policy-based justifications led to significantly
higher compliance when compared with environment-based
or no justifications). In our user study with highly compe-
tent robot teammates, participants were more successful in
accomplishing their task when presented with this style of low
transparency, easily comprehensible justification.

It is important to note that if the robotic agent were not
giving competent recommendations, participants would likely



Fig. 7: A taxonomy of the usefulness of each justification type.

have performed significantly worse due to their over-reliance
on a low-quality decision support system. Policy-based jus-
tification could result in over-reliance and dependence on
the system, causing passive thinking patterns [35] where the
human cedes effective control of decision-making entirely to
the robot agent. In cases of low robot competence, this would
lead to a large number of Type I errors where users accept
low-quality advice from the system [21, 14]

Therefore, during human-robot teaming scenarios or do-
mains where you would expect the quality of robotic guidance
to be fairly high relative to a human operating by themselves,
policy-based justification should be used, increasing human
teammate compliance, making them a more predictable mem-
ber of a multi-agent team. This would significantly improve
the planning system’s ability to optimize over all agents, since
the innate uncertainty associated with accounting for human
decision making would be greatly reduced [13, 39]. Policy-
based justification can also be suitable when the human needs
to make snap decisions in time-critical situations.

2) Low Robot Competence or High Human Competence:
Use Environment-based Justification: Environment-based fea-
tures provide highly interpretable, highly contextual informa-
tion, and are well-suited for representing uncertainty. They
push human teammates towards a more active thinking pattern,
which is more analytical, deliberate, and rational [35]. Humans
tend to view this type of justification as more of a tool,
compared with the more abstracted policy-based justifications.
This can lead to better-informed decision making and more
successful adaptation to uncertain situations. In our study, we
observed that environment-based justifications during changes
of recommendation were associated with significantly more
thinking time than policy-based or no justifications. What’s
more, participants rated robotic agents using environment-
based justifications as the most trustworthy, and environment-
based justifications themselves as the most informative, inter-
pretable, and helpful for their decision-making process.

This added transparency and increased information con-
tent comes at the cost of being more demanding and time-
consuming to parse, leading to slower decisions. Additionally,
environment features are able to be interpreted in any number
of ways by different human agents, which often leads to

highly variable, independent human behavior [59]. This leads
to a significantly lower compliance rate when compared with
policy-based justifications. If environment-based justifications
were deployed in a domain with a high relative competence
of robot-provided guidance, there would be a large number of
Type II errors made, whenever users reject the high-quality
advice of the robot. Therefore, in scenarios where the human
teammate brings expertise in their decision-making that is hard
to match with the automated guidance of a collaborative robot,
environment-based justifications are more appropriate.

Focusing on the other axis of our 2x2 justification char-
acterization, in our study we generally found that the use
of global features outperformed the local features on the
respective measures that policy-based and environment-based
justifications excelled at. For instance, ‘global policy’ had the
highest user compliance rate and performance, and ‘global
environment’ had the highest perceived interpretability. We
posit that this is likely related to the short-term nature of the
interaction in our evaluation domain. In longer lasting, more
complex domains, local features may prove may beneficial,
as they can help prevent the human teammate from being
overwhelmed by excess information. More research is needed
to confirm this. We summarize the characteristics and suitable
use cases of each justification type in Fig. 7.

B. Potential Application: AR-based Spatial Navigation

To illustrate the application of these synthesized justification
design principles, we present a concept of how they might by
implemented in a real-world decision support system embed-
ded in an augmented reality (AR) interface (similar to Tabrez
et al. [59]). Since our framework and results are drawn from
a partially observable, multi-goal search task, we designed
this interface for domains that share these characteristics,
such as search and rescue, radiological device recovery, or
explosive ordnance disposal. However, since the features tested
were derived from general xAI principles, it is likely that the
taxonomy presented in Fig. 7 is more broadly applicable to a
wide range of human-robot collaborative tasks, though further
research is needed to confirm this.

Humans using this interface explore an environment search-
ing for hidden targets. Meanwhile, a drone teammate conducts
its own exploration of the environment, using its sensors to
update its model of where it believes the hidden targets are
likely to be. The drone continually provides navigation guid-
ance to the human, aiding them in the task of locating as many
targets as possible in a limited amount of time. Whenever
justification is triggered by a significant change in guidance,
one of two justification modules is chosen, depending on the
drone’s current confidence in the quality of that guidance.

AR-based Policy Justification. In regions of high drone
confidence, a policy justification is triggered (Fig. 8 Top). The
AR interface renders the current guidance in the form of a
colored arrow and pin directly overlaid onto the environment,
telling the human where the drone thinks they should go
and search next. The guidance from the prior time step
is rendered as a gray arrow and pin. In addition to these



Fig. 8: Top: AR-based policy justification. Bottom: AR-based
environment justification.

paths, a counterfactual natural language description is provided
as justification on the user’s AR-based menu, showing the
difference in expected utility of taking the new path in contrast
to the old path.

AR-based Environment Justification. In regions of low
drone confidence, an environment justification is triggered
(Fig. 8 Bottom). In addition to rendering the current and pre-
vious paths as seen in the policy justification, the AR interface
renders the drone’s current PMF as a heatmap overlaid onto
the environment, using a gradient from purple to yellow to
represent low and high chances of finding a target, respectively.
Two AR-based pins are rendered over the current and prior
targets, showcasing the local PMF values at each location.
Users are able to view the PMF and pins from the prior
timestep to visualize how the environment features changed to
lead to a changed recommendation, providing a justification
for taking the new path as opposed to the old path.

The task in this implementation has similar dynamics to
the treasure hunt game, though lifted into a 3D, real world
domain. Although the interface pictured in Fig. 8 is shown
at the scale of a large room, the same type of visualization
could be spatially expanded to large outdoor environments to
serve as a viable interface for real-world drone assisted target-
finding tasks.

IX. CONCLUSION

In this work, we highlighted the value of strategic timing
for robot-provided explanations that serve as justifications
during instances of mismatched expectations in the context
of decision-support for human-robot teaming (e.g., when an
agent’s recommendation is unexpected or confusing). A justi-
fication provided in this context aims to convince the human
teammate of the utility of the previously difficult-to-interpret
recommendations. Our work contributes answers toward two
fundamental questions at the intersection of explainable AI
and human-robot teaming: 1) When are justifications most

impactful and useful? And 2) What information should be
presented in those justifications to improve human teammate
decision-making and behavior?

We propose a novel value of information-based framework
to determine when a decision-support system should provide
justifications to a human collaborator, such that a balance is
struck between informativeness, and avoiding habituation and
excess cognitive load. We validated the proposed framework
through an expert-feedback case study, demonstrating the use-
fulness of justifications when they are timed appropriately. We
also present a characterization of four types of counterfactually
generated justification, drawing from a taxonomy established
in explainable AI literature: global policy, local policy, global
environment, and local environment. The justification types
were evaluated in an online human subjects study (n = 91)
involving a collaborative, partially observable search task
alongside robot teammates.

We show that robots providing policy-based justification led
to higher compliance and faster decision-making. We addition-
ally show, in contrast, that robots providing environment-based
justification led to higher subjective ratings of interpretability,
intelligence, and trustworthiness of the robot teammates.

Based on our experimental findings, we offer actionable rec-
ommendations for operationalizing these results into decision-
support systems that prioritize explainability and foster ap-
propriate trust and reliability. We additionally demonstrate
how these sythesized design principles can be applied to a
real-world decision-support system with a concept augmented-
reality interface. Justifications should be user-centric, taking
into consideration the relative competence of human and
robotic agents, the user’s expectations of the robot, and how
different types of justification can influence user thinking
patterns and performance.
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