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Abstract—Collaborative robots continue to depend on substan-
tial robot programming expertise to be useful to end-consumers
and small to mid-level enterprise. Robot skill learning techniques,
like Concept Constrained Learning from Demonstration, allow a
robot to learn robust skills from non-expert users. This method
combines traditional Robot Learning from Demonstration data
with constraints to enable the communication of richer skill-
pertinent information as task specific behavior restrictions. This
approach is integrated into a visual interactive system called Aug-
mented Reality for Constrained Learning from Demonstration
(ARC-LfD). This interactive system enables users to iteratively
program robot skills through demonstration and constraint
application in situ using augmented reality.

However, as constraints and acquired skills grow in number,
users might not have a deep understanding of the capabilities
of the robot for any given learned skill. This paper proposes
an extension to the ARC-LfD system that will provide ‘what-
if’ visualizations called Robot Behavior Counterfactuals (RBCs).
RBCs serve to explain the effects of alternative constraint
usage, as well as the effects constraints have on the potential
for skill success, particularly when adapting skills to altered
environments. ARC-LfD will also be extended with visuals called
Behavioral Verification Indicators that aid users in understanding
where and why a potential model will fail or succeed. This
proposed system will be evaluated with a human-trial study to test
for objective and subjective measures of belief in robot capability.

I. INTRODUCTION

Collaborative robots (cobots) are those designed to work
with or alongside human counterparts. They have the potential
to greatly expand physical automation in small to mid-level
enterprises as well as in end-consumer applications. However,
cobots remain inaccessible to the vast majority of end-users
due, in part, to the extensive robot programming knowledge
needed for successful deployment. This is particularly true
due to the nature of the tasks cobots are expected to perform
within human-robot settings: safety in shared environments,
dynamic task requirements, decision-making, and adhering to
user expectations of behavior. One key in overcoming these
challenges is to inject an element of intelligent self-autonomy
and awareness that boost a robot’s intrinsic capability.

Fig. 1. Example of ARC-LfD visualizations with an expected trajectory
(left) and possible constraint (right) as augmented reality visuals. Robot Be-
havior Counterfactuals will integrate into these visuals as multiple alternative
execution trajectories overlaid within the same point of view, offering users
a preview of potential alternative execution capabilities.

A set of learning techniques that employ statistical and
machine learning methods is called Robot Learning From
Demonstration (LfD). Inspired by human-to-human teaching,
the goal of LfD methods is to enable non-expert user to teach
robots skills without extensive programming knowledge. By
leveraging the domain-knowledge of the user, LfD techniques
have users ‘demonstrate’ to the robot how the user wants
the robot to complete a task. Ideally, the robot possesses the
appropriate intelligent learning ability such that it captures
enough information from the user to produce a successful skill
model.

One LfD method called Concept Constrained Learning
from Demonstration (CC-LfD) augments traditional ‘demon-
stration’ data (e.g. robot configuration trajectories) with high-
level behavioral restrictions or constraints [23]. Along with
physically moving the robot through the skill it should learn
(i.e. demonstration), users also demarcate when and where
behavioral restrictions must be satisfied during execution. This
algorithm has been integrated into a system called Augmented
Reality for Constrained Learning from Demonstration (ARC-
LfD) that produces visualizations of expected robot execution
trajectories and constraints [20] (see Fig. 1). ARC-LfD enables
non-expert users to train robot skills using CC-LfD through
demonstration and interactive constraint engineering to gener-
ate new learned models. This facilitates skill model shaping to



adapt to new task requirements such as changes to goal/target
orientations and new arrangements of the environment.

However, as the number of constraints and acquired skills
are made available to the robot increases, users might not
have a clear understanding of the effects of constraints or
even if the chosen learned model can adapt to changes in
the environment. This paper proposes that extending ARC-
LfD with concurrent visualizations of alternative execution
models called Robot Behavior Counterfactuals (RBCs) and
additional success/failure visuals called Behavior Verification
Indicators (BVIs) will increase awareness of learned model
capability by illuminating the effects of changing constraints
and by explaining the ability of a model to adapt to new task
requirements.

II. RELATED WORKS AND PRELIMINARIES

A. Constrained Learning from Demonstration

Robot Learning from Demonstration (LfD) methods are
those that enable the learning of successful robot behav-
ior models from human demonstration [4]. Through various
modes of interaction, a human operator provides a set of
demonstrations that ideally communicate the nature of the skill
to the robot system. The goal is such that the expertise of
the human translates to a more successful learned model than
more brute force techniques such as reinforcement learning-
based models [3]. Most importantly, LfD methods reduce the
need for robotics expertise, enabling non-roboticists to quickly
teach robots useful skills.

The modes of demonstration traditionally employed by LfD
methods generally focus on the kinematic aspects of the
demonstrated skill, be it imitation-based or kinesthetic-based
demonstration [5, 8, 1]. In other words, very often the demon-
stration focuses on the physical movements required to execute
the task successfully. However, if we look to human-human
teaching for inspiration, we see there are other information-
dense forms of communication (e.g., speech and gesture) as
well rich implicit contexts highly beneficial to knowledge
transfer [24, 36]. Mueller et.al. [23] introduces the idea of
incorporating conceptually-grounded behavioral constraints to
enrich the information usable by Keyframe-based Learning
from Demonstration techniques [2] in an algorithm called
Concept Constrained Learning from Demonstration (CC-LfD).
Concept Constraints are semantically grounded Boolean clas-
sifiers that determine whether or not an environment state
vector satisfies the represented constraint (e.g. keeping a cup
upright, or maintaining a specific distance from an object).
These constraints are communicated to the robot system by
the user, usually during demonstration. Concept Constraints
help shape the learned model to more closely reflect the
ground truth representation of a skill by encoding richer and
more abstract information than can be done by traditional
demonstration alone.

An important caveat is that CC-LfD in its current form oc-
cludes the effects of newly assigned constraints, only revealing
the relearned model during execution. As constraints and their
effects on robot behavior might not always be comprehensible

to the human operator, this is potentially problematic. As these
Boolean classifiers grow in complexity (such as an increase in
the number of parameters), it might be difficult for the human
operator to intuit whether such constraints are useful or what
their effect might be on the behavior of the robot. Conversely, a
user might be quite aware of the behavioral restrictions needed
to be placed onto a robot but might not know whether doing
so is feasible given the current learned model or environment.

With these limitations in mind, an alternative interface might
better inform the user of the potential effects of constraints.
One such interface is Augmented Reality (AR), which has a
well-established body of research in the robotics community
[12, 35] as evidenced by improving human-robot teaming
[9, 29], increasing safety in shared environments [40, 30], and
through interfaces for explainability [16, 17, 11]. Motivated by
this research, Luebbers et.al. [20] developed an interface the
combines the benefits of the enriched information communi-
cation of CC-LfD with AR. This system is called Augmented
Reality for Constrained Learning from Demonstration (ARC-
LfD) and it enables users to interactively update constraints
and observe the corresponding relearned models given the new
restrictions on the behavior of the robot. ARC-LfD provides
visualizations of both constraints assigned to segments of a
skill, and the expected trajectory of execution the robot will
undergo (see Fig. 1). The motive is that this knowledge will
better communicate to the user whether or not the robot will
adhere to notions of correct behavior and whether it will
successfully execute the task.

B. Counterfactuals in Robotics

CC-LfD and ARC-LfD constitute a novel extension in the
field of LfD, but they are limited in that they require the user
to internally think about what constraints might be needed
to correctly shape a learned model. While ARC-LfD can
provide model visualizations, it does not currently support
a way to compare differences in constraint assignment and
parameterization. Ideally, this system should enable users to
ask “what if?” questions that answer how different constraint
assignments and parameterizations will look compared against
each other overlaid in the same visualization. Conversely,
the system could show the user what would happen if a
constraint were suddenly removed from the learned model.
These approaches of generating hypothetical alternatives given
changes to the learned model’s expected execution can be
considered a form of a counterfactual.

Generally, contrastive examples and counterfactuals are
approaches for intuiting the validity of causal models. Con-
trastive examples are those that offer an alternative scenario in
order to exemplify the validity of the current model or to intuit
input/output relationships [19]. Contrastive examples alter
inputs to a known model to determine the role such changes
have on the model’s output. This essentially seeks to identify
which input features play a role in affecting output thereby
providing an accounting for which inputs or features have a
causal effect. Counterfactuals [22] use negating hypothetical
causal conditionals to intuit the causal link between one event



and another. For example, given the statement, “I drank hot tea,
and my mouth is burned”, a counterfactual explanation would
be, “If I did not drink hot tea, then I wouldn’t have burned
my mouth”. In other words, a counterfactual is a hypothetical
causal statement that describes an alternative scenario that
investigates whether the negation of one event demonstrates
a causal link to the other event.

Contrastive explanations and counterfactuals are well uti-
lized within Artificial Intelligence (AI) [25, 10], but are
especially leveraged within the subfield of Explainable AI
(XAI). These techniques are useful for generating explanations
via natural language [13], for enhancing explainability in
model-free reinforcement learning [21], for use alongside
a game-theoretic framework to generate machine learning
model explanations [28], and for debugging machine learning
models [39]. In robotics, counterfactuals have been used to
demonstrate causal reasoning about tool affordances [7], as
a mechanism to reason about robot navigation [6], and as a
mechanism for causal inference and explanation to enhance
robot control [33].

Counterfactuals are traditionally used as a mechanism to
verify a known causal structured model [27], but in machine
learning such causal models do not exist or are opaque
to the user. Therefore, counterfactuals generally become a
mechanism for intuiting the effects of varying input on the
model’s output, but not necessarily for intuiting the causal
mechanism for that change [26]. Generally, counterfactuals in
AI/ML are used as a reasoning / debugging aid for human
understanding but not as a mechanisms that the model itself
uses to reason about causality [39]. The proposed Robot Be-
havior Counterfactuals are not used by robot learning system
to reason but instead to allow human operators to reason about
the validity of the model they are teaching the robot.

III. ROBOT BEHAVIOR COUNTERFACTUALS

A. RBC and BVI Visualizations

We posit that presenting counterfactual behavior visualiza-
tions of the effects constraint assignment and parameterization
will enhance the ARC-LfD interface by providing possible
alternative execution models that better informs users about
model capability and the necessity of constraints. Figure 2 acts
as a simplified example of this concept. In their simplest form,
RBCs are models (and the corresponding visualizations) of
expected robot behavior given user updates to a set of assigned
constrained on a CC-LfD model using the ARC-LfD interface.
RBC constraint (Fig. 2, purple) and trajectory (Fig. 2, orange)
visualizations will be placed in the same augmented reality
environment as the current expected trajectory visualization
(Fig. 2, black). We also posit that visual indicators that inform
users of potential skill execution success or failure will also
enhance the ARC-LfD interface (Fig. 2, red & green). These
Behavior Verification Indicators will provide visual aids to
users that indicate whether or not changes to a model will
result in a success or failure that might not easily be captured
by a planning predicate in the form of a Concept Constraint.

Robot Behavior Counterfactual

Original Robot Trajectory

Behavior Verification Indicators

Centering Constraint Visual

Fig. 2. Simplified visual of a Robot Behavior Counterfactual (orange)
overlaid in the same field of view of the current expected robot trajectory
(black). An example Behavior Verification Indicator might highlight how the
skill failed (red) or succeeded (green). The RBC differs from the original
trajectory due to the assigned centering constraint (purple) that makes the
robot pour the contents correctly into the receptacle.

Figure 3 provides a high-level overview of the proposed
interaction flow of ARC-LfD extended with RBCs and BVIs.
1) A user first provides a set of initial demonstrations along
with a potential set of constraints to produce an initial CC-
LfD model. 2) The ARC-LfD visualization engine takes this
initial model and provides a visualization of the expected robot
behavior. 3) The user is given the option to add/remove/update
constraints to generate potential parameterizations for alterna-
tive models. 4) These are fed into an update process where
multiple models are generated, including the potential eval-
uation of the success/failure modes of those models. These
generated models serve as the basis for the RBCs visuals
produced again by the ARC-LfD visualization engine. Steps
2-4 can be repeated until the user elects to choose the model
of the RBC that is ideal for actual execution, step 5.

B. Technical Extensions to ARC-LfD

In order for ARC-LfD to provide RBC visualizations, the
system must be extended in two important ways. The first need
is for the interface to display multiple constrained trajectory
visuals overlaid in the same point of view of the Microsoft
Hololens. This requires the ability to run multiple concurrent
model updates and the ability to quickly produce constrained
motion plans. ARC-LfD only produces visualizations of the
sequences of the keyframe waypoints of these models. With
the addition of visualized trajectories of the end-effector, we
can provide animations (leveraging simulation) between these
keyframes. This will provide a visual example of how the
robot will execute a skill, adhere to assigned constraints, and
interact with its environment. In order to produce simulated
animations, the system will also need to quickly produce
feasible constrained motion plans for the variations of RBC’s
dependent on differing constraint parameterizations and as-
signments.

The second extension to ARC-LfD will be the addition of
Behavior Verification Indicators (BVIs) that aid in the use of
the visual explanations for skill success/failure. BVIs will be
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Fig. 3. High-level overview of the interaction flow of ARC-LfD now extended
with Robot Behavior Counterfactual and Behavior Verification Indicator
visualization. Green zone indicates physical interaction. Purple zone indicates
interaction in AR.

visually similar to how ARC-LfD currently displays constraint
satisfaction given expected robot behavior, but they do not
result in model relearning. For example, a BVI might indicate
whether or not contents from a cup successfully reached a
target receptacle. This indication could take the form of a
green box outline around the target if the simulation of an
RBC trajectory results in the contents successfully placed into
the receptacle (see Fig. 2). Such an indication is not easily
grounded into a Concept Constraint Boolean classifier for use
by the underlying CC-LfD algorithm. Not all indicators of
success can be used as planning predicates.

IV. STUDY DESIGN AND EVALUATION

A. Interface Design Scenarios

The purpose of this proposed evaluation is to demonstrate
that the information provided by ARC-LfD, and especially
the extensions of ARC-LfD that support RBCs, will increase
the situational awareness of human users of the system.
Specifically we will conduct four different conditions as a
between-subjects study. Each condition is designed to build up
from a baseline that mimics the original CC-LfD evaluation,
tests the current ARC-LfD system, and then evaluates the
addition of RBC’s with and without BVIs. For each condition,
given previously learned skill models, the user must decide
whether or not the resultant updates to constraints will result
in skill execution success. A between-subjects study design
is chose to minimize learning effects between the differing
interface capabilities.

1) Condition I - Baseline: In the control condition, we
show the users the demonstration of kinesthetic teaching
by adding constraints through a tablet interface, and
then demonstrate the resulting execution behavior as the

only information update about the effects of constraints.
There is no ARC-LfD interaction in this condition as it
mimics the original evaluation of CC-LfD.

2) Condition II - Current ARC-LfD Visualizations: Uses the
existing ARC-LfD interface without RBCs where that
only shows updated models after constraint updates are
performed.

3) Condition III - ARC-LfD with RBC: In this condition,
side-by-side visualizations of models generated from
proposed constraint changes (RBCs) are provided to the
user, who can either accept or reject the differing RBCs.

4) Condition IV - ARC-LfD with RBCs and BVIs: This
condition adds BVIs to Condition III to further aid the
users in knowing whether a task is successfully executed
or not.

B. Experiment Tasks

We will be using same three task presented in the case
studies of ARC-LfD for consistency for each condition:

1) Pouring/Transferring Task: The robot should carry a cup
filled with contents, move the arm over an obstacle,
position the cup over a target, and pour out the contents
into a target bowl.

2) Lid Placement Task: The robot should place a lid cor-
rectly onto the center of an object top. Two obstacles on
either side of the target will require the end-effector to
smoothly travel between the objects without knocking
them over.

3) Cubby Task: The robot should place an object inside a
cubby that requires proper orientation of the object for
successful placement.

C. Design Validation

For each conditional, participants will complete surveys
before and after task execution to test the following objective
and subjective metrics:

1) Trust/Reliability: We will use established scales in HRI
(HRI Trust Scale, Dyadic Trust Scale) to determine the
subjective trust and reliability of the different design
interfaces [18, 32].

2) Helpful/Useful: Helpfulness and usefulness scales pro-
vide the subjective measure of usefulness of the system
to the user [37, 34].

3) Explainability/Interpretability: Explainability and inter-
pretability metrics try to capture users’ mental models
of intelligent systems or decision aid systems. We will
be using explainability metrics to determine users’ un-
derstanding and trust in the system [15, 38].

4) Shared perception and situational awareness: Shared
perception or shared mental model allows teams or
collaborators to draw from the common knowledge
to perform fluent and adaptive actions increasing trust
and teamwork [38]. Situational awareness defines the
informational needs of humans during any activity or



collaboration. Shared perception and situational aware-
ness are correlated with increased explainability and
improved team performance [31].

As per the subjective measure’s requirement, we will be
using established practices in HRI for operationalizing con-
structs into variables and measures as provided by Hoffman
and Zhao [14].

We hypothesize the following: H1) conditions 2-4 will gen-
erally outperform conditions 1 for all the given metrics, H2)
condition 3 and condition 4 will provide more explainability,
trust, and reliability compared to other conditions because of
the increase in conveyed information provided by RBCs and
BVIs, and H3) condition 4 will also outperform other scenarios
in terms of trust/reliability and usefulness, as the BVIs aid
users to provide closure on whether a task is successfully
learned.

V. CONCLUSION

In this work, we propose an extension of the constrained
LfD interface ARC-LfD by allowing human operators to
reason about the validity of the model learned by the system.
We leverage counterfactual explanations from explainable AI
literature to generate ‘what-if’ visualizations called Robot Be-
havior Counterfactuals. Additionally, we propose Behavioral
Verification Indicators to aid users in understanding why a
model fails or succeeds. We also outline a human-subject study
to evaluate our proposed extension.
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