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Abstract— Kitting refers to the task of preparing and group-
ing necessary parts and tools (or “kits”) for assembly in a
manufacturing environment. Automating this process simplifies
the assembly task for human workers and improves efficiency.
Existing automated Kkitting systems adhere to scripted instruc-
tions and predefined heuristics. However, given variability in
the availability of parts and logistic delays, the inflexibility of
existing systems can limit the overall efficiency of an assembly
line. In this paper, we propose a bilevel optimization framework
to enable a robot to perform task segmentation-based part
selection, kit arrangement, and delivery scheduling to provide
custom-tailored Kkits just in time—i.e., right when they are
needed. We evaluate the proposed approach both through a
human subjects study (n=18) involving the construction of a
flat-pack furniture table and shop-flow simulation based on
the data from the study. Our results show that the just-in-
time kitting system is objectively more efficient, resilient to
upstream shop flow delays, and subjectively more preferable
as compared to baseline approaches of using kits defined by
rigid task segmentation boundaries defined by the task graph
itself or a single kit that includes all parts necessary to assemble
a single unit.

I. INTRODUCTION

In the conventional or “single model” assembly line, only
one product type is manufactured at a time. While this tradi-
tional manufacturing approach simplifies the responsibilities
of line workers, it limits flexibility: making one product at
a time means costly changeovers when switching product
types, making it difficult to respond fluidly to changing
dynamics of customer demand, upstream part shortages, and
customizations. For this reason, manufacturers may employ
“mixed model” assembly, in which multiple products — with
different parts and assembly steps — are assembled on the
same line. This approach smooths upstream part demand and
can lead to much greater overall productivity in the assembly
line [26].

The trade-off of mixed model assembly is that it requires
assembly line workers to take on a greater range of tasks.
Rather than constantly performing a rote series of assembly
steps, workers now need to keep track of the various parts
and steps for each product on the line. One approach to
streamlining this step at the worker level is kitting. In man-
ufacturing systems, kitting refers to the process of collecting
components in a "kit" or container before feeding them to
workstations where intermediate or end products are built.

*This work was supported by the Army Research Laboratory under grant
WO11NF-20-2-0083, W911NF-21-2-0290, and W911NF-21-2-0123, and by
the Office of Naval Research under grant NO0014-22-1-2482.

The authors are affiliated with the Department of Computer Science,
University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO
80309, US.A. {firstname}.{lastname}@colorado.edu

Fig. 1: This work presents an optimization approach to
automate just-in-time robot part delivery for collaborative as-
sembly. Here, a robot gathers parts required for an assembly
task and places them on a kitting tray. The human then uses
this "kit" to complete the next set of tasks for continuing to
assemble the product.

Kitting possesses a number of advantages: it 1) reduces
storage space requirements at the workstations, 2) enables
efficient product changeover (since common components
are stored at a central location), and 3) increases worker
productivity by reducing time spent gathering parts [2], [7].

Kitting is an excellent opportunity space for leveraging
collaborative robotics to improve the efficiency of workers.
While automation has seen great success in many areas of
manufacturing, assembly tasks often remain too complex to
automate completely: robots lack the fine-motor capabilities
required for dexterous manipulation of small parts and tools.
Kitting, however, is well within the mechanical capabilities
of modern robots, and its automation would allow a robot
to prepare kits while more dexterous agents assemble the
product. This parallelism could greatly decrease the time and
effort required to complete each product assembly.

In this work we propose and evaluate a dynamic robotic
kitting planner that segments and schedules assembly tasks to
minimize idle time and reduce makespan. The primary con-
tributions of this work are: a) a novel optimization algorithm
for just-in-time robotic kitting, which incorporates a model
of the assembly goal, estimates of human and robot task
times, and estimated usability of the generated kit layout;
b) a demonstration of the optimization and its performance



outcomes on an experimental human-robot collaboration
scenario; and c) an analysis of the optimization’s robustness
to logistic delays in simulation.

We formulate just in time kitting and delivery as a
bilevel optimization, where the “upper-level” problem of task
scheduling and segmentation is optimized in concert with
the “lower-level” problem of part kitting. By performing this
nested optimization, the robot adapts to its kitting conditions
(e.g. kit arrangement and part availability) while syncing its
workflow to that of the human.

To evaluate our kitting approach’s ability to increase
efficiency and improve users’ experience in a human-robot
collaborative assembly, we implement our system on a
Sawyer robot (Figure 1) and conduct a within-subjects user
study of collaborative furniture assembly. To evaluate the
system’s performance in scenarios with logistic delays, we
use data from the user study to simulate the assembly process
under varying conditions of part availability and throughput
to explore our system’s robustness.

II. BACKGROUND & RELATED WORK

One of the disadvantages of kitting is that the preparation
of kits consumes worker time and effort that don’t directly
contribute to the assembly task. Kitting in mixed-model as-
sembly lines also has higher rates of error [11] and assembly
workers report higher cognitive loads [12], [19]. Due to the
physical and cognitive demands of manual kit preparation,
robotic kitting has been explored to increase efficiency and
flexibility. Caputo et al. [3] developed an economic model
to show that automated systems are more cost effective and
efficient, except in low production settings. Boudella et al.
[1] developed a delivery-time-sensitive model to optimally
distribute kitting tasks between a human and robot in a
mixed-model assembly line, and saw significant efficiency
improvements over baselines where the human worker took
on the majority of the tasks. A mixed-integer linear program-
ming approach to online kit delivery scheduling is presented
in [14], in which the robot takes over all kitting tasks and
results in large productivity improvements over a manual
kitting baseline.

Our work differs from the above examples in that it
presents a fully-automated kitting system that achieves Just
in Time (JIT) part feeding, a lean manufacturing principle
designed to eliminate waste in production [7]. The goal of
JIT manufacturing is to feed the required quantity of parts
to the workstations when they are needed, rather than before
or after. Traditionally, JIT kitting is accomplished by deter-
mining the required kits at each workstation and designing
the assembly layouts and kit sizes accordingly [20]. Other
production systems use material handling techniques like
kitting trolleys [16] or automated delivery vehicles [25] to
achieve JIT.

Several optimization approaches have been proposed to
enable timely human robot or robot-robot interactions. An
auction algorithm for solving task allocation with temporal
constraints is presented in [17], and a non-linear program
for flexible scheduling of robot tasks is presented in [22]. In
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Fig. 2: A task graph for assembly of a stool. The robot
retrieves the parts required for the human to complete the
assembly. The arrows indicate precedence constraints. The
robot tasks are represented by TR = {af a¥ af} and the
human tasks are represented by T = {alfl ,agl ,agi }.

addition to optimizing for efficiency, temporal considerations
have been shown to enable fluent human robot teaming
in [15]. Our work differs from the above by using bilevel
optimization to minimize idle times and also optimize for
part selection and kit arrangement.

In this work, we use task segmentation and scheduling
of kitting tasks to achieve JIT delivery. By incorporating an
awareness of human and robot task times, as well as part
availability into kit layout and design, our system is more
capable of adapting its kitting behavior to meet the changing
demands of mixed model assembly lines.

III. PROBLEM FORMULATION

Consider a two-station, human-robot collaborative task
where a human assembler works at an assembly workstation
and a robot prepares kits at a preparation workstation. The
robot receives part deliveries and produces kits, while the
human receives kits and produces product. Let:

A={aj,a,...a,}

be the set of n assembly tasks that need to be performed
to complete the assembly. Each task a; is composed of the
robot-dependent kitting task af? , in which the robot gathers
the necessary parts, and the human-dependent assembly task
af’ . The robot has to complete preparation task afe (.e.,
kitting and delivering components) before the human can
begin af’ (assembling). In order to schedule its actions, the
robot’s goal is to compute a task ordering over A for itself
and the human to follow in order to finish the assembly as
quickly as possible.

The tasks in .A may not need to be completed in a strict
order, but some tasks may have ordering constraints — for
example, one may need to complete “insert screws to top”
before one can perform “insert front leg" to build a table. Let
us say that if task a; must be completed before a;, then a;
has a precedence constraint with a;j. Any task ordering the
robot computes must satisfy these precedence constraints.
See Figure 2 for an example task precedence graph, and the
associated part retrievals the robot needs to perform. Our
proposed approach is generalizable to tasks with precedence
constraints as described above.
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Fig. 3: Overview of the bilevel optimization algorithm for
just in time kitting. The upper level optimization seg-
ments and schedules tasks, and the lower level optimiza-
tion arranges parts on the tray. By minimizing the differ-
ences between duration®(T,,1) and duration™ (T;) (shown
in green) and the differences between duration®(T,.,) and
duration™ (T4 1) (shown in blue) as well as other terms in
the objective function F (Eq. 3 - 7), the robot determined the
task segment 7741 which corresponds to the set of tasks Insert
Front Top (ag) and Insert Front Leg (a§). The task segment
T;41 also depended on the kit fitness function f (Eq. 11)
which evaluates the kit layout given the parts required P for
tasks in T;+1. The robot’s role is to prepare parts required
for a§ and a§ in a kit according to the layout determined by
f at timestep £+ 1.

To create a schedule to complete each task given a task
ordering, the robot segments tasks into groups. This means
the robot can prepare a kit one segment at a time, rather than
having to make one kit for each of the human’s tasks. This
also introduces the additional constraint that a segment can
only be valid if all the associated parts can fit in the kit. Let
us represent a task segment at time step f as 7; C A.

Once the tasks have been segmented into groups, the
robot generates a schedule by determining when to start each
segment. For this, it uses its prior knowledge for how long
a given segment will take, both for itself and the human; let
us represent this as duration' (T;) and duration® (T;) respec-
tively. For the task in Figure 2, one possible segmentation
isT={T,»} ={{a1,a2},{as}} and a possible schedule is
S ={0s,35s}. Lastly, the robot must arrange all of the parts
for the current segment 7; into the kit — that is, all of the
parts required for each task a € T;.

IV. PROPOSED APPROACH

We formulate our solution as a bilevel optimization, a
hierarchical constrained optimization where one problem is
embedded in another (i.e., Figure 3). The general formulation
of a bilevel optimization problem is:

min F(x,y) st G(x,y) <0 (1)

xeX,yeY

yE argrzléi)p{f(x,z) st g(x,z) <0} )

where F is the upper-level objective function, G represents
the upper-level constraints, f is the lower-level objective
function, and g represents the lower-level constraints [4]. In
our approach, the upper-level problem Eq. 1 determines the
task segmentation and schedule, and the lower-level problem
Eq. 2 determines the physical arrangement of parts in the kit.

A. Task Segmentation and Scheduling

We define our notation as follows: K = {aj,ay,...} is
an ordered sequence of future tasks to execute (where a;
represents both robot and human tasks af and af), i is an
index partitioning K to determine the tasks to be included in
the next kit, T is a time-ordered sequence of task segments
as defined above, ¢ € [1,|T|] is the current task segment
being completed, P is a kit layout defined by a set of
part coordinates (part id, x, y) in a kitting tray, G is the
task graph encoding precedence constraints for the overall
task, d is a scalar constant indicating the time required for
a kit delivery, and W; is a scalar weight hyperparameter
for the kth objective function component. We utilize two
functions within the objective, allowed(task, set of completed
tasks, task precedence graph) which returns 1 if rask can
be completed given the set of completed tasks and the task
precedence graph (0 otherwise) and kit_fitness(kit layout)
which evaluates a kit layout for usability (returning a scalar
where larger is better).

The optimization for timestep ¢+ 1 is defined as follows:
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The first term (3) allows us to heavily penalize proposed
task sequences K that do not satisfy precedence constraints.
The second term (4) can be used to override other terms
to prioritize kits covering more tasks. The third term (5)
penalizes differences between the human’s remaining task
time and the duration required to prepare and deliver the
proposed next kit. The fourth term (6) is similar, penalizing
partitions that are likely to lead to idle times after 7;i.
Finally, the fifth term (11) incentivizes kit layouts with high
utility, which is solved for by the second level of optimization
given a proposed K and i.

After solving for values of K,i,P, we set task segment
T;4+1 = Ky.; and increment f. This optimization is run on
a greedy basis at each timestep while the robot executes
its kitting behaviors. Without loss of generality, i can be
defined as a vector of indices that create |i|+ 1 task segments

Ti = Kosijo)» Tr+1 = Kijop:if1]> -+ Kifjij—1):k|- Terms (5,

Ly =



6) would be updated to minimize the differences between
human and robot task times for each segment.

The proposed task segmentation and scheduling solution
for JIT Kkitting is an instance of flow-shop scheduling, which
has been shown to be NP-hard [6], [8]. We approximate the
optimal solution by only considering a limited horizon and
partial task plans K of fixed length up to N (N =5 in our
experiments).

B. Kit Arrangement

The nested lower-level objective function kit fitness is
defined to score the arrangement of parts for a given task
segment on the tray used for kit delivery. This task segment
T;+1 is given by K and i as defined in the previous section.

Let P denote the set of parts required for the tasks in 774
and their coordinates on the 2D plane of the Kkitting tray.
Let Pjx and Py denote the x and y coordinates of the jth
part’s centroid in the kit. These coordinates are solved for
with the lower optimization, with an objective function that
maximizes kit fitness. We first define terms of the kit_fitness
objective to prioritize logical grouping of items on the tray:

|P| |P|
dsz Z Z \/ka JX (Pk> Pj-,y)z
=k+1:
(P_;)#Q(Pk)
(®)
|P| |P|
\ume Z Z (Pk,x - Pf,X)z + (Pk’y - Pjv)’)z
=1 j=k+1:
O(P))=0(P)
9)

where Q(p) denotes the part type of part p, such as "M6
screw" or "connector." Equation 8 sums the Euclidean dis-
tance between all parts of different types, while 9 does the
same for all parts of the same type.

We also define a term to penalize overlap between items on
a tray, as we wish to discourage the robot from piling objects
on top of one another. Let BB(p,x,y) denote the bounding
box of part p centered at point (x,y). We define Z as the total
overlapping area between the bounding boxes of all parts:

Pl |P|
P)=Y Y BB(P,Piy Py)NBB(P;,P;.,P;,) (10)
k=1 j=k+1

Lastly, we use the terms described above to define our kit
fitness objective function, with terms K,i defined by the
upper-level optimization and Wy a scalar hyperparameter
to modulate the optimization’s focus on discouraging part
overlap:

l’l’ganme(P)fDdiff(P)f‘/Vﬁ *Z(P) (11)
|P|
subject to: U BB(Py, P x, Py y) C areay;

k=1

]
U parts_in(K;) € P
J=1

The objective function maximizes distances of parts with
different types, minimizes distances of parts with the same
type, and penalizes overlaps. The constraint ensures that the
2D space taken up by parts in the kit does not exceed or
extend beyond the tray area and that all necessary parts are
included in the kit.

We use the cross entropy (CE) method to solve the kit
arrangement problem. CE is a stochastic algorithm that
provides an adaptive procedure for solving combinatorial
optimization problems and has asymptotic convergence prop-
erties [5]. Other stochastic methods such as simulated anneal-
ing [21] and genetic algorithms [10] can also be used.

Algorithm 1 Cross Entropy Method for kit arrangement

Require: list of parts P, sample count to keep ¢
initialize p (P, Pry,6; Vk € 1:|P|), L randomly
while not converged and max iterations not reached do
samples ~ N'(l,X)
scores < sorted(score(samples))
and sort from largest to smallest
U < mean(samples][: c])
Y. < covariance(samples[: c]) > recompute mean and
covariance from new samples
end while
return U

> score samples

Algorithm 1 shows the implementation for CE. We first
randomly initialize the mean vector and covariance matrix.
The mean vector contains the position (x and y) and ori-
entation (0) of the parts that have to be placed on the tray.
While the solution hasn’t converged or the maximum number
of iterations (100) has not been reached, we draw samples
from a Gaussian distribution (200 in our experiments) with
the current estimated mean and covariance. The samples are
scored using Equation 11 and sorted from largest to smallest.
Then we use the top ¢ samples to recompute the mean
and covariance (¢ = 30 in our experiments). The algorithm
returns the estimated mean after convergence or after the
maximum number of iterations.

V. EXPERIMENTAL VALIDATION

With the goal of evaluating our proposed system under
a variety of logistic delay scenarios, we first perform a
user study to collect user experience data. We then use this
study as a basis to perform a series of simulated shop floor
evaluations of the robot’s kitting delivery performance under
multiple conditions varying supply failure likelihood and
delivery distance between kitting and assembly stations.

A. User Study

We had 19 people (10 males, 9 females) participate in
our IRB-approved study, ranging in age from 22 to 31 (M =
25.47, SD = 2.37). One data point was discarded because
the Sawyer robot lost connection to the study computer in
the middle of the experiment. Participants were tasked with
the construction of a flat-pack furniture table [24] shown in



Fig. 4: (a) The robot arranges parts on the tray according to the lower-level optimization. (b) The robot delivers a finished
kit to the user. (c) The user begins the assembly task while the robot prepares the kit for the next tasks. (d) The user finishes

assembling a flat-pack furniture table.

Figure 4. Table assembly involves connecting four feet, four
legs, four connectors, and a flat surface plank by snapping
the pieces together and securing with screws and nuts.

1) Experimental Design: We use a within-subjects ex-
periment to evaluate our optimization approach and two
baseline conditions: (a) Whole Assembly is a baseline which
resembles traditional kitting strategies where all the required
parts for a single unit are placed on the kitting tray prior to
assembly, (b) Single Task is a human-designed JIT schedule
where the robot delivers parts for a single task at a time as
segmented by the task graph itself (one kit per vertex), and
(c) Optimized is the result of applying the proposed bilevel
optimization algorithm to the assembly task. To minimize
learning effects, we counterbalance the condition orderings
and ask the participants to practice assembling part of the
table before the experiment.

The assembly task is divided into a total of 12 tasks, i.e.
3 tasks per leg of the table. The precedence constraints (see
Section III) dictate that the feet and connecting joint have to
be secured to the leg before the leg can be secured to the
plank. The robot’s tasks include delivering the screws, nuts,
four legs, four feet, and four joints to the human participant
via a kitting tray. The human participant and the robot have
separate workspaces, and the human participant is instructed
to not enter the robot’s workspace during the experiment.
Figure 1 shows the experiment setup.

2) Metrics: The objective metrics used to assess the
efficiency of our proposed approach are the total task time
and the human idle time. The total task time is the total ex-
periment time for assembling a single table. The human idle
time is defined as the duration of the experiment in which
the participant was not actively assembling parts. A post-
experiment survey was used to assess the user experience:
participants were asked to rank each trial based on the robot’s
Usefulness, Intuitiveness, and Efficiency during that trial.

3) Hypotheses:

o H1: The Optimized condition will have a makespan

lower-bounding Single Task and Whole Assembly con-
ditions with reduced idle time that is proportional to

delivery duration.

o H2: Participants will perceive the Optimized condition
more highly along subjective measures (usefulness, in-
tuitiveness, and efficiency) than the Single Task and
Whole Assembly conditions.

4) Study Protocol: After a brief introduction to the robot’s
role in part delivery, the human participant was presented
with a printed guide document, which included step-by-step
instructions in both written and visual form. The participant
was asked to practice constructing a single leg of the table
before the experiment began.

During the experiment, the required parts were initially
placed in the robot workspace. The robot kitted the assembly
parts by placing some number of them onto a tray, and then
pushing the tray towards the human. The participant was then
notified to retrieve the parts on the tray. The robot returned
to its kitting task once the participant retrieved the parts. The
same assembly was repeated for all three conditions.

5) Implementation Details: We implemented the opti-
mization framework on a Sawyer Research Robot, using the
Robot Operating System (ROS) [13]. We installed an Intel
RealSense D435 Depth Camera above the robot workspace
and used the Facebook Detectron2 algorithm [23] for image
segmentation of the assembly parts. We used the ArUco
library [9] to detect markers placed on the screw boxes and
tray to read their pose.

B. Shop Floor Simulation

While the user study provides useful insights for user
preferences and task efficiency for a single assembly, we
use discrete event simulation (DES) to evaluate our proposed
approach when multiple assemblies of the furniture table are
performed in sequence. We evaluate the framework under
various assembly part arrival time distributions and part-
feeding machine breakdown conditions (i.e. the part is not
available to the robot until after the machine is repaired).
DES is able to explicitly model events using probability dis-
tributions and answers questions such as the line throughput
and utilization [18].
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Fig. 5: Top: Total task time and human idle time across
all three conditions. Both the Optimized and Single Task
approaches had significantly lower total times in both metrics
than in the Whole Assembly condition. Bottom: Total user
ranking scores for each condition across three subjective
metrics: usefulness, intuitiveness, and efficiency. The Whole
Assembly condition had significantly worse scores than the
algorithmic conditions across all three rankings. The Single
Task and Optimized conditions did not vary significantly on
any of the above metrics, likely due to the proximity of the
robot to the human (no delivery delays).

** indicates p < .001; *** indicates p < .0001.

1) Experimental Design: We simulated the assembly of
ten flat-pack furniture tables. For each assembly, we ran-
domly sampled a participant’s task times and the robot’s task
times as recorded from the user study detailed in V-A. The
arrival time of assembly parts to the robot’s workspace is
modeled by an exponential distribution with Mean Arrival
Time denoted by MAT. In other words, the arrival of parts
is a Poisson process with rate 1/MAT. Since increasing the
arrival times of all the parts linearly increases the total task
times, we only vary the MAT of the leg and foot part types.
We also model the machine breakdown for the feeding of the

leg and foot parts with an exponential distribution. The mean
time to failure of the machines is denoted by MTTF. Each
machine has a fixed repair time of 30 seconds, after which it
starts feeding parts again according to the part arrival process
with rate 1/MAT.

2) Hypothesis:

o H3: When simulating multiple assemblies of the task,
the Optimized condition will significantly outperform
baseline kitting strategies in both total task time and
human idle time in the presence of logistical delays.

3) Implementation Details: The simulation is imple-

mented in Python using the SimPy library. In order to
account for assembly part shortages due to slow arrival times
or machine breakdowns, we add an additional term to the
upper-level objective function:

|P|

w; Y U(R)
k=1

12)

where U (p) returns 1 if part p is currently unavailable for
the robot to place on the tray and O otherwise.

VI. RESULTS
A. User Study

1) Objective measures: Total task time and human idle
time measures were analyzed using the one-way analysis
of variances (ANOVA) with experimental condition as an
independent variable. Post-hoc analysis used Tukey’s HSD
test for multiple comparisons to test for effects between
condition pairs. The results are summarized in Figure 5.

Total task time: The effect of condition significantly
influenced total task time, F(2,34) = 57.60, p < .0001, with
a significant reduction in task time between the Whole
Assembly condition and the Single Task condition (p <
.0001, 95% C.I. = [-188.211, -103.851]), as well as between
the Whole Assembly and Optimized conditions (p < .0001,
95% C.I. = [-213.213, -128.853]).

Human idle time: The effect of experimental condi-
tion significantly influenced human idle time, F(2,34) =
709.87, p < .0001; there was a significant reduction in idle
time between the Whole Assembly and Single Task condi-
tions (p < .0001, 95% C.I. = [-184.465, -158.586]), as well
as between the Whole Assembly and Optimized conditions
(p < .0001, 95% C.I. = [-186.020, -160.141]).

2) Subjective measures: We analyzed rank scale data on
our post-experiment survey using a nonparametric Kruskal-
Wallis Test with experimental condition as a fixed effect.
Post-hoc comparisons used the Wilcoxon method for ana-
lyzing rank significance between condition pairs. The results
are summarized in Figure 5.

B. Simulation

In simulation, we compare the task time and human
idle time outcomes between fixed strategies (Single Task
and Whole Assembly) and the Optimized strategy. Percent
improvements in task time and human idle time between con-
ditions are summarized in Figure 6. Results were analyzed
using the same methods as in Section VI-A.
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Fig. 6: Comparisons of Optimized approach with baselines in simulation. (a) and (b) show the percent improvement in
total task time of the Optimized approach over the Single Task and Whole Assembly conditions respectively. With low
part shortage (i.e. low MAT), Optimized is most advantageous over Single Task because Single Task has many more tray
deliveries which increase the total robot task time. With high part shortage (i.e. high MAT), Optimized is most advantageous
over Whole Assembly because Optimized adapts the kitting strategy according to which parts are available. (c) and (d) show
the percent improvement in human idle time of the Optimized approach over the Single Task and Whole Assembly conditions
respectively. The trend for human idle time is similar to that of total task time. * denotes p < .05 while ** denotes p < .001.

VII. DISCUSSION

Assembly. However, there was no significant difference in
rankings of Single Task and Optimized on any of the three
subjective metrics (all p > .05). From the post-experiment

interviews, participants found the Optimized or Single Task
conditions most efficient because "

it gave me the parts in
timely manner", and "[it has] less waiting time." This sug-

Hypothesis H1 regarding task time and idle time is sup-
ported by the user study results. We suspect that Optimized
is similar to Single Task due to the high variance in the
participants’ task times and the absence of delivery distance
(the human and robot were co-located across a table). The
average human task time (i.e. non-idle time) for a single

assembly and across all conditions was 374.78 seconds with
a standard deviation of 61.14 seconds.

Hypothesis H2 is supported; the Optimized condition
had significantly lower ranking scores (i.e. were ranked

better) in usefulness, intuitiveness, and efficiency than Whole

gests that participants preferred just-in-time kitting strategies.
Some participants indicated they found the just-in-time ap-
proaches less cognitively demanding; "[The robot is] guiding
me through the most efficient way to complete the assembly
job ... the robot lifted part of my pressure to plan it."

Hypothesis H3 is supported; the total task time and human



idle time are significantly shorter for Optimized than either
Single Task or Whole Assembly for most of the scenarios
with logistic delays. Optimized is most advantageous over
Whole Assembly when there is a high part shortage (high
MAT) because Whole Assembly waits for all the parts to be
kitted before delivering the kit to the assembly station. When
a part is delayed, Whole Assembly waits until the part be-
comes available. While Single Task also suffers from logistic
delays, the effect is less prominent because kits are delivered
with partial assembly parts. The Optimized approach is able
to dynamically determine which tasks to deliver parts for in
order to minimize idle times and maximize efficiency.

VIII. CONCLUSIONS

This work introduces a bilevel optimization approach for
robot kitting and demonstrates its ability to reduce both
overall task time and human and robot idle times for a
furniture assembly task. In a user study, we evaluated this
approach against a generic whole-kit assembly (Whole As-
sembly) and a human-designed just in time approach (Single
Task), and found that just in time kitting had quicker task
completion and were rated more highly by users on a number
of subjective metrics. Simulating longer and more varied task
environments revealed that the online optimized approach
demonstrates significant performance improvement over the
fixed kitting strategies in more realistic settings that include
logistic delays.

The user study suggested two additional avenues of future
research: online estimates of human task time to better
minimize idle times and the addition of human factors into
the optimization framework. Lastly, we plan to investigate
which factors best improve the efficiency and intuitiveness of
kitting tray designs. One limitation of this work is the limited
horizon used which may not generate the most optimal
kitting strategy with respect to the objective function. With
more compute power or longer planning times, our approach
can generate more optimal Kits.
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