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Abstract
Communication is crucial for synchronizing expectations and knowledge within teams. For robots to effectively
collaborate with or provide actionable decision-support or coaching to humans, it is critical that they be able to
generate intelligible explanations to reconcile differences between their understanding of the world and that of
their collaborators. In this work we present Single-shot Policy Elicitation for Augmenting Rewards (SPEAR), a
novel sequential optimization algorithm that uses semantic explanations derived from combinations of planning
predicates to augment human agents’ reward functions, driving their policies to exhibit more optimal behavior by
modeling humans as reinforcement learning (RL) agents and reconciling disparities in their reward function. We
present an experimental validation of the policy manipulation capabilities of SPEAR in a practically grounded
application and a performance analysis of SPEAR across a suite of domains with increasingly complex state
spaces and predicate counts. SPEAR demonstrates substantial improvements in runtime and addressable problem
size, enabling an expert agent to leverage its own expertise to communicate actionable information to improve
human performance. Through a series of human subjects studies, we demonstrate SPEAR’s potential to improve
human policies and reduce cognitive load, all while enhancing interpretability, task awareness, and promoting
active thinking patterns among users. Finally, we apply SPEAR in a robot-to-robot policy manipulation scenario,
showcasing its applicability in robot-robot collaborations.

Keywords Human-agent collaboration � Explainable AI � Collaborating robots � Policy explanation

1 Introduction and motivation

Autonomous systems have been shown to improve human performance across a multitude of tasks by imparting
useful knowledge or motivating positive behavioral changes [1–3]. As is the case in the domains of human-AI
tutoring and coaching, this is accomplished primarily using natural language explanations [4, 5]. Unfortunately,
the process of generating concise and informative explanations capable of eliciting desired changes is a difficult
task, as it requires both insights into a human collaborator’s decision-making process and the ability to determine
and convey important information [6–8]. Similarly, for autonomous robots operating with different state repre-
sentations (e.g., different embodiments or sensors), policy repair requires a common ground (language) to
communicate updates for efficient behavior modification during the task. Despite their generalizability, large
language models currently fall short in planning and reasoning capabilities and lack real-world grounding, which
limits their ability to provide reliable and factual explanations in high-stakes scenarios [9, 10].

In this work, we characterize the problem of semantically manipulating human behavior through external
advice, especially when a human teammate displays suboptimal behaviors. We model the human agent as a
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reinforcement learner, whose suboptimality is attributed to a misguided reward function rather than a faulty policy
search algorithm [4]. Our proposed solution empowers autonomous agents to: 1) Infer the reward function driving
human agent’s behavior; 2) Identify divergences between human reward function and their own; and 3) Offer
advice that concisely and efficiently rectifies these differences, enabling human policy repair.

An illustrative scenario we use to demonstrate the importance and practicality of this work is routing people
during an emergency building evacuation, where inhabitants are unaware of the precise nature of the emergency
(Fig. 1-right). Even if people are capable of navigating toward the nearest exit, uncertainty about the nature of
environmental hazards could be disastrous. Adding to the complexity of time-critical, high-consequence scenarios
like this one, it is essential that any advice or instructions account for the recipient’s knowledge of the world, and
therefore must also consider tradeoffs between accuracy, specificity, and interpretability [11, 12]. As an example,
someone visiting a building for a meeting may not know how to change their evacuation plan when told ‘‘There’s
a fire near Conference Room 3,’’ but may be able to adapt their plan if told ‘‘the north half of the building is on
fire.’’ Even though the latter phrase may not communicate the most accurate representation of the hazard, it is
more easily comprehensible to someone who is less familiar with the building. Thus, autonomous systems aiming
to offer useful feedback must explicitly consider the complexity of their own explanations and the knowledge
held by those they attempt to help.

To achieve this, we present Single-shot Policy Elicitation for Augmenting Rewards (SPEAR), a novel integer
programming-based algorithm for generating reward updates in the form of natural language advice to improve
the policies of human collaborators. SPEAR enables an autonomous robot to utilize knowledge about the beliefs
and goals of its collaborators (whether they are humans or other robotic agents) to identify inaccuracies in their
models, generating targeted, interpretable guidance for updating their reward functions (and thus, policies) during
a task. Key to its effectiveness, SPEAR generates feedback with levels of specificity appropriate to the human
agent’s understanding of the world. The four primary contributions of our work are:

• A characterization of the policy elicitation problem.
• SPEAR, a novel algorithm for improving task performance through semantic elicitation of others’ policies.
• An integer program enabling semantic communication of state space regions that scales linearly with predicate

count (an improvement over exponential, exact methods [13]).
• An experimental validation and performance analysis of SPEAR, along with a series of human-subjects

studies to validate the utility of SPEAR-generated explanations.

Fig. 1 (Left) The robot is
cleaning a tabletop, but the
human observer mistakenly
thinks all objects will be
thrown out, requiring clari-
fication. (Right) A human
tries to exit a building dur-
ing a fire, unaware of haz-
ard locations. With
SPEAR, these policies can
be repaired (or justified),
using natural language
updates to produce more
optimal behavior
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2 Background and related work

Human-Centered Explainable AI. As autonomous systems become increasingly capable decision makers, xAI has
emerged as a necessary component for fielding safe autonomous systems. Explainable AI can help bridge the gap
between human and autonomous agents by making complex models more understandable, allowing for faster
debugging and failure recovery, ultimately improving transparency, trust, and team performance [14–16].
Research in xAI has primarily targeted algorithm transparency for developers, aiding in model debugging and
behavior prediction [15, 17]. Though these approaches are beneficial for experts, such methods might restrict end
users who engage with these models and directly experience the consequences of failure [18, 19].

A popular approach is to use post hoc explanation methods on RL and/or neural network controllers to enhance
interpretability, enabling both developers and novices to understand and debug models during system failures, as
well as assist in decision-making [6, 20]. Some examples include generating flowcharts or recipe-like instructions
for users [21], employing decision tree-based RL models [22, 23], providing case-based explanations for visu-
alizing class boundaries [24], and using counterfactual explanations to infer a causal link between input and
output models [25].

Others have explored the generation of different types of explanations based on user preference [26, 27]. Work
by Briggs and Scheutz explored adverbial cues informed by Grice’s maxims of effective conversational com-
munication (quality, quantity, and relation) [28] to transparently track and update mental models of collaborators
[29]. Others have leveraged abstraction in explanations [6], allowing for simplified and more useful explanations
when an agent’s decision-making model is too complex for the observer to comprehend. Our proposed approach
generates explanations using overstatement or understatement to abstract detail when necessary, enabling agents
to provide helpful feedback even with limited common language.

Explanations for Model Reconciliation. Previous research has demonstrated that explanations bring trans-
parency and also play a functional role in synchronizing expectations during misalignments between human and
robot agents [6, 7, 30]. Moreover, people tend to trust autonomous agents more when they have a clear
understanding of the robot’s capabilities and decision-making process [16]. An effective approach for establishing
shared mental models in human–robot collaboration has been to use natural language to explain robots’ behavior
or underlying logic [4, 13]. Hayes and Shah [13] approached the problem of state region description as a set cover
problem, trying to find the smallest logical expression of predicates that succinctly describe a target state region.
While original, their method’s exponential memory and runtime relative to domain and predicate size limits its
real-world applicability. This method was further adapted to multiagent RL environments for policy summa-
rization and query-based explanations [31]. Our approach builds on these formulations and enables real-time
applicability in most real-world problems.

Furthermore, though these techniques focus on improving an agent’s transparency and behavior using
explanation, they don’t account for collaborators’ level of knowledge or need for the information. Recent research
has leveraged value of information (VOI) to determine when and what information to communicate during
collaborative decision-making [32, 33]. Luebbers et al.’s framework, grounded in VOI theory, allows robots to
strategically time justifications during periods of misaligned expectations for greater effect. This approach
improves performance, assists users in making informed decisions, and promotes higher interpretability [34].

In this work we focus on policy elicitation, a process through which feedback is crafted and given to another
agent, in the form of reward function updates during task execution, such that they change their behavior to match
the desired policy. By providing reward information for targeted regions of state space through explanations
(symbolic updates), we can modify a collaborator’s reward function using semantic descriptions.
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3 Policy elicitation via social manipulation

The goal of policy elicitation is to cause a behavior change (policy update) in another agent through some form of
communicative act. To effectively collaborate with others and coach them toward more optimal policies, it is
essential that these communications are intelligible [4, 35, 36], but directly communicating states (i.e. the feature
vector itself) relies on there being an efficient mechanism to communicate that information quickly. These criteria
are unlikely to hold with humans or heterogeneous robotic agents (not all agents will have the same state
representations) as the intended recipients. Our work generates state space-agnostic natural language descriptions
of state regions and corresponding reward information (i.e., abstracting the low-level state space), allowing agents
to update their reward functions (and policies). The process of eliciting these updates is formally defined in
Sect. 4.2, where we present the mathematical structure and objectives of policy elicitation.

Planning Predicates. We define a base predicate to be a pre-defined Boolean state classifier (as found in
traditional STRIPS planning [37]) with associated string explanation (e.g., in_central_hallway(x) ! ‘‘X is in the
central hallway.’’). To represent intersections of predicates (e.g., ‘‘in the central hallway’’ AND ‘‘has fire
extinguisher’’), we introduce composite predicates, which consist of multiple base predicates and evaluate to true
if and only if all base predicate members evaluate to true. Predicates may also have a cost associated with them
(e.g., how long they take to communicate) to assist the optimizer with generating more desirable solutions. In
SPEAR, predicates are composed in disjunctive normal form to communicate state regions needing reward
updates to improve the collaborator’s task performance (Fig. 3).

3.1 Formal definition of policy elicitation

Policy elicitation is the process of guiding an agent to update its initial policy, pinit, representing its current
behavior, to align with a target policy, ptarget, representing its desired behavior. This is achieved by providing
corrective feedback U, which modifies the agent’s understanding of its reward structure.

The corrective feedback U : S ! R adjusts the agent’s initial reward function Rinit : S ! R by incorporating
new information (e.g., explanations, symbolic updates). The updated reward function is defined as:

RupdatedðsÞ ¼ RinitðsÞ þ UðsÞ;

where s 2 S represents a state and U(s) quantifies the adjustment applied to RinitðsÞ.
The agent’s updated policy, pupdated, is obtained by optimizing for the modified reward function:

pupdated ¼ argmax
p

Ep½Rupdated�;

where Ep½Rupdated� is the expected cumulative reward under the updated policy.
The goal of policy elicitation is to ensure that the updated policy pupdated approximates the target policy ptarget

by achieving performance within an acceptable threshold s:

EpupdatedðRtargetÞ� s;

where s is a domain-specific threshold set by a domain expert based on acceptable task performance and Rtarget

represents the reward function associated with the target policy.
Assumptions. We characterize the problem of repairing or otherwise manipulating an agent’s policy as one of

identifying and reconciling divergence between a source and target reward function. Our proposed algorithm
relies upon the following assumptions: 1) agents can understand the natural language description of the predicates
(mapping string to predicate), and these predicates are grounded in a shared and interpretable state representation
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[13]; 2) agents are operating using a functional planner or policy learning algorithm informed by a reward
function (or something analogous), and this planner is capable of finding an improved policy given updated
rewards [4]; 3) agents’ suboptimal action selections are attributable to a malformed reward function rather than a
malformed policy search algorithm or inaccurate dynamics model of the environment [4, 38]; 4) the environment
transition dynamics remain stationary during policy elicitation, meaning that updated rewards will lead to con-
sistent behavior improvements.

4 Approach

In this section, we specify the problem of reparative policy elicitation: repairing or manipulating an agent’s policy
by communicating corrections for model divergences. Our approach to policy elicitation uses three components
that: 1) estimate the agent’s reward function; 2) determine important reward function disparities that prevent
desirable behavior; and 3) determine which states to provide reward updates for and communicate a corrective
explanation. For clarity, we will use the terminology of an ‘expert’ to refer to an agent who is initiating
communicative action, and a ‘novice’ to refer to an agent or human whose policy is being corrected.

4.1 Belief estimation with active observation

We formulate our domain as a Markov Decision Process (MDP)[39], wherein an agent acts to maximize an
expected reward. M is a MDP defined by the 4-tuple (S, A, T, R) where S is the set of states in the MDP, A is the
set available actions, T is a stochastic transition function describing the model’s action-based state transition
dynamics, and R is the reward function R : S� A� S ! R. Intuitively, M serves as a simulator for an agent in
the task domain.

The novice human collaborator’s internal policy is not directly observable by the expert agent, making it latent
from the expert’s perspective. To address this, we perform belief estimation to infer the human’s most likely
reward function, Rh, based on the observable information, similar to [4, 34]. From this inferred reward function,
we derive the corresponding policy, p�h, under the assumption that humans act to optimize their expected reward
given their current understanding of rewards. This assumption aligns with established practices in inverse
reinforcement learning and preference learning literature [4, 38, 40]. Because the only reward information
humans receive is communicated either via the expert agent or through observing human behavior, we update the
human’s reward function Rh and resultant policy p�h whenever the agent provides a communicative update or
based on human’s past actions, similar to [34].

4.2 Finding important model divergences

Once we have our belief of the novice human agent’s possible reward function Rh, we identify divergences
between the optimal policy p� and the policy of the human p�h that would cause a reduction in the human’s
expected cumulative reward. We do this by comparing policies trained on R and Rh, where R is the true reward
function of the domain and Rh is the reward function used by the novice human. We then identify a set of states �S
for which we communicate updated reward information to augment Rh, such that a more optimal policy (closer to
the expected reward of p�) is elicited (Fig. 3b).

4.3 Communicating state regions

We approach the problem of efficiently describing state regions as a set cover problem, trying to find the smallest
logical expression of communicable predicates to succinctly describe target states as in Hayes and Shah [13].
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Unlike prior work, we solve for the minimum set cover of the targeted state region using an integer program
formulation that admits approximate solutions as well. The inputs to our IP formulation include:

• A set of state indices �S ¼ fs1; s2; � � � ; sj �Sjg that correspond to states with expected reward function divergence
that need to be communicated for policy repair.

• A set of communicable predicates �P ¼ fp1; p2; � � � pj �Pjg. The following is necessary for a solution to exist:
9 �Q � �P, such that 8s 2 �S, s is covered by a predicate in �Q, — for every state that needs to be covered ( �S),
there exists a non-empty subset of predicates �Q that can cover it.

• A set of costs �C ¼ fc1; c2; � � � ; cj �Pjg, such that 8 c 2 �C; c 6¼ 0 — every predicate has nonzero cost associated
with using it to update the human’s reward function Rh.

• The desired trajectory for the human �O ¼ fo1; o2; � � � ; oj �Ojg, where oi describes the state achieved after taking

the ith action following the optimal policy p� from the start state.

The cost for each predicate can be customized per task, as many factors may influence the cost of a predicate. One
such criteria for defining cost can be the length of the string describing the predicate. Such a criteria could
generate more easily understood explanations by imposing penalties for being too verbose.

A solution to the policy elicitation problem consists of selecting predicates to communicate reward information
about specific state regions such that a more optimal policy is produced within some � bound of the optimal
policy’s expected reward, jEp�ðRÞ � Ep�

h
ðRhÞj 	 �.

To minimize this objective while satisfying all the constraints, we define the mathematical formulation of our
IP, which we refer to as SPEAR-IP, below:

The decision variable xj is defined as:

xj 2 0; 1; where xj ¼
1; if predicate pj is included in the set cover,

0; otherwise.

�
ð1Þ

using the above definitions of policy elicitation, the objective function is:

min
Xj �Pj
j¼1

cjxj þ L
Xj �Oj
k¼1

Xj �Pj
j¼1

vkjxj ð2Þ

while subject to the following constraints:

Xj �Pj
j¼1

uijxj� 1 8 i 2 ½1; j �Sj� ð3Þ

where we define the following matrices:
1. U: j �Sj � j �Pj matrix representing state-to-predicate coverage, defined as:

uij ¼
1; if state si is covered by pj;

0; otherwise.

�
ð4Þ

2. V: j �Oj � j �Pj matrix representing trajectory-to-predicate overlap, defined as:

vkj ¼
1; if trajectory state ok is covered by pj;

0; otherwise.

�
ð5Þ
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L is a large constant that acts as a penalty term and soft constraint violation indicator. The indices i and k are in
sets �P and �O, respectively, and xj 2 f0; 1g indicates whether the predicate pj is included (xj ¼ 1) or excluded
(xj ¼ 0) from the set cover. Equation 2 minimizes the cost of the set cover while prioritizing completeness. The
first term of Equation 2 minimizes the total cost of the chosen predicates, while the second term penalizes the
objective function for any overlap of the selected set cover with the desired path when communicating a negative
reward (this can be inverted for positive reinforcement). Equation 3 provides a hard constraint for the inclusion of
states from �S in the set cover. Equation 4 defines the elements of matrix U, which encapsulates cover constraints
from �S (inclusion of all states). Equation 5 defines the elements of matrix V using the desired trajectory �O,
encapsulating the requirements for eliciting the desired policy.

The second term from the objective of Equation 2 can be removed to enforce a hard constraint to find an exact
set cover that excludes states on the desired path. However, this approach restricts the capability to find solutions
that would provide a near optimal policy update. This second term leads to three possible cases: 1) Set cover
solution with a low cost (cost\L); 2) No solution for the set cover; and 3) Set cover solution with high cost (cost
[L).
Cases 1 and 2 are straightforward and describe the ability of SPEAR-IP to solve the set cover. Case 3 is

interesting and provides the option of further exploration to find an alternate solution. Using the set cover from
Case 3, we can identify overlapping states with the desired path. By penalizing these states in the true reward
function R, we can simulate an alternate desired policy, effectively coming up with a contingency for imprecise
language. This process of penalization is repeated until either Case 1 or 2 is reached.

SPEAR-IP is a specialized variant of the NP-hard set cover problem, with added constraints and objectives.
The runtime varies based on problem characteristics and solver efficiency [41]. We discuss the runtime in
Sect. 5.2.
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Algorithm 1 Single-shot Policy Elicitation for Augmenting Rewards (SPEAR)
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Algorithm 2 Predicate selection (Minimal set cover)

4.4 Algorithm

Algorithm 1 details how SPEAR identifies communicative predicates. We build intuition for this using our
emergency evacuation example from Fig. 1-right. Given an estimate of the novice human agent’s reward
function, SPEAR communicates a reward update in an attempt to elicit the best possible policy. To achieve this,
(Line 3–16) we perform multiple forward rollouts of the novice agent’s policy ph derived from Rh and (Line 13–
16) compare the accumulated expected reward to the reward threshold RL. The moment this threshold is crossed,
the reward from that transition is determined to be relevant for updating Rh and the state is added to the set cover.
The threshold RL is domain-specific and depends on the threshold for ‘‘failure’’, which will vary across reward
functions and the meaning of reward. Note that suboptimal does not necessarily imply failure: failure is a
subjective distinction that the domain designer must make.

This can be easily illustrated for our example, where Fig. 2b shows the belief of a novice human trying to
evacuate the building. Figure 3b gives insight into how updating the human’s reward function can result in an
optimal policy even if the human’s belief about the fires doesn’t truly match the environment. Likewise, for a
different building layout, a policy causing a human to take a longer path than optimal may still be considered both
successful and an acceptable improvement if it causes the human to safely reach an exit.

After finding the states responsible for meaningful reward divergence, we find a minimal set cover of com-
municable predicates that map onto these states. This is achieved through SPEAR-IP, discussed in Sect. 4.3. We
use an off-the-shelf optimizer [42] to solve SPEAR-IP (Line 18), where the predicate selection method takes in
the states to cover ( �S) and the best agent policy p�h. This gives a set of communicable predicates and a final cost
using Algorithm 2.
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Line 19 checks whether or not a solution exists for a given set of predicates. In lines 20–28, our algorithm
evaluates case 3 to determine if alternate solutions exist. In lines 23–27, SPEAR performs multiple forward
rollouts of the optimal policy to find states responsible for a high cost. In line 26, these states are penalized in the
true reward function (R) to incentivize the algorithm to find an alternate solution which avoids these states. This
enables SPEAR to explore alternate solutions, making it more robust in applications where the available pred-
icates are insufficient, overcoming barriers due to imprecise or unavailable language.

In line 28, now that all the appropriate states are penalized, the algorithm repeats the whole procedure from the
beginning with a modified R, continuing this process until it finds a low objective solution or no solution (case 1
or 2). Finally, in line 30, the update is serialized as semantic feedback using the Set Cover. This feedback
generation strategy uses negative reward to drive a novice human agent’s policy away from undesirable states, as
improved policies can then be elicited through the exclusion of states along the human’s (hypothesized) originally
intended path. While similar outcomes can be achieved via positive reward, a state exclusion-based strategy
generally allows for the use of less precise predicates.

Fig. 2 Rollouts of the human’s estimated policy are used to identify suboptimal behavior. a The true environment that the
agent is acting in. b The environment that the human believes it is acting in. c A rollout of the human agent’s estimated
policy reveals the minimal amount of hazardous states that need to be communicated for policy repair

Fig. 3 We ground reward function updates in language using a Boolean algebra over predicates. a A domain map with an
overlay indicating states where various predicates are true. b After communicating ‘‘The center hallway is on fire,’’ a belief
update for the human shows potential fire locations, though language imprecision means some of the fires (shown as faded)
do not exist. Despite the imprecision, the optimal policy is elicited from this update
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In Algorithm 2, we produce the set cover for communicating the reward update. Lines 4–7 evaluate states we
want the novice agent to traverse (the desired trajectory �O) by performing a forward rollout of the best attainable
policy p�h. In lines 8–13, the matrices U and V from Equation 4-5 are defined, which form the basis of the
constraints governing the inclusion of states to cover and exclusion of optimal states (when giving information
about negative reward) in the set cover, respectively. Finally, in line 15, SPEAR-IP is solved using the matrices U
and V to give Set Cover and Objective.

5 Algorithmic evaluation

To demonstrate the utility of our algorithm and validate the effectiveness of its generated explanations, we present
a series of algorithmic evaluations and human-subjects user studies. This section focuses on an empirical analysis
of SPEAR’s algorithmic performance, considering domain size and predicate count in a simulated emergency
evacuation scenario. In Sects. 6 and 7, we present two separate human-subjects studies aimed at evaluating the
usefulness and applicability of explanations generated by SPEAR across various applications, targeting expert
and novice users, respectively.

5.1 Evaluation domain

In this scenario, our expert autonomous agent must help a human agent escape from a smart building in which a
series of fires has broken out, as shown in Fig. 2. While people in the building are not aware of the fire locations,
they are assumed to understand the generated predicate-based language.

The building layout for each trial is generated with a stochastic placement of rooms, hallways and exits over a
gridworld of fixed size. For example, a gridworld of size 40 � 40 (1600 states) may have parameters: rooms =
10, hallways = 40, and number of exits = 5. We utilized randomly generated predicates for validation to
demonstrate the generalizability of our approach. To accommodate the full range of possible state regions to
cover using predicates, we consider composite predicates (intersections of base predicates) from the power set of
base predicates, providing each scenario with an upper bound of 2n � 1 possible predicates given n base
predicates.

Once the building layout and predicates are generated, we observe a randomly placed human agent exploring a
hazard-free building over a fixed number of episodes (e.g., 25 episodes for 40 � 40 states). The human agent’s
policy is then trained to always seek the shortest path to the closest exit that was discovered during these
exploration episodes. Initially, SPEAR has no knowledge about which exits the human is aware of, but gradually,
its belief about the human’s reward function is updated from these past observations [34]. Next, we begin the
evaluation by adding fire to the building randomly. Once this process completes, we start the SPEAR evaluation.
Predicates from SPEAR-IP are used to update the human agent’s reward function during the episode. We update
the policy of the human using the repaired reward function after each update.

5.2 Algorithmic performance

We evaluate performance based on state space size and predicate count using various building layouts. We test its
adaptability to diverse state mappings with randomly generated, n-sphere shaped predicates. In structured
environments like Fig. 3a, building-grounded predicates make it easier to find hazardous predicates. However,
stochastic predicate placements, which simulate non-tailored languages, complicate solutions and increase
computational time, highlighting the algorithm’s resilience in predicate-domain mismatches.

We assess our algorithm in an evacuation scenario for both deterministic and stochastic environments (Fig. 4).
In the stochastic domain, a stochastic transition function was applied describing the model’s action-based state
transition dynamics (agent takes prescribed action with a probability of 85%). For each map in both environments,
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we evaluate our algorithm for 100 episodes. In each episode the reward was computed both before and after the
SPEAR update (exit: ?100, fire: �100, and each step: �1). For our stochastic evaluation, we set our forward
rollout count parameter, k, to 10. The results from our simulations show a substantial improvement in the episodic
reward after the SPEAR update (Fig. 4), demonstrating utility in both deterministic and stochastic domains.

Furthermore, we analyze performance as a function of predicate count by dividing into the two success cases
described in Sect. 4.3: 1) Maps with a low cost solution (Case 1); and 2) Maps with high cost solution (Case 3).
Figure 5-left shows how algorithm performance changes with increasing predicate count on low cost maps. For
Case 1 solutions, our algorithm exhibits linear computational time as a function of the number of predicates, with
the set cover able to be computed within 50 s with nearly 10,000 communicable predicates. To put the signif-
icance of this in context, the prior state-of-the-art using the Quine-McCluskey(QM) algorithm [13] takes
approximately 60–120 s for solving set covers with 10 predicates on similar hardware, with performance dete-
riorating exponentially as the predicate count increases. Our approach achieves an order-of-magnitude
improvement over the QM-based method, operationalizing insights from past work [13] to communicate state
regions—underpinning SPEAR’s policy update.

We plot the performance for Case 3 solutions as predicate count increases (Fig. 5-right). We observe that the
plots again scale linearly in practice with respect to the number of predicates, but with higher computation time

Fig. 4 SPEAR’s evaluation
in stochastic and determin-
istic evacuation domains
(25 � 25) shows substan-
tial increase in episodic
reward from symbolic
reward updates

Fig. 5 (Left) SPEAR’s performance on low-cost (case 1) maps shows linear runtime growth with predicate count. (Right)
High-cost map (case 3) performance scales linearly with predicate count; sharp time drops (purple) result from SPEAR more
quickly finding solutions with new predicates
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due to multiple SPEAR runs. Computation time is higher here because the algorithm has to explore alternative
solutions for the desired policy, solving for set cover solutions multiple times (Sect. 4.3).

SPEAR achieves a dramatic improvement in computation time over the QM-based set cover approach by pre-
computing predicates over the state space, which alleviates some of the online computation during the prime
implicant step (exponential in computational time) of the QM approach [43]. Additionally, QM can only provide
an exact set cover, failing when there is no exact cover, making it slower and less versatile. SPEAR’s use of an
approximation heuristic makes it faster and more adaptable than the QM-based approach.

We observed interesting irregularities in performance as evident by results from the 80 X 80 world (Fig. 5-
right-purple). We find that sudden dips in computation time can occur when new language enables the algorithm
to find a Case 1 (single-loop) or cheaper Case 3 (multiple loops, but fewer) solution.

The final part of our performance analysis looks algorithm performance as domain size increases with fixed
predicate count (100 base predicates). We generate a set of maps with similar parameters for a fixed state space
size, sampling from these maps to get the mean and confidence bound for 10 simulation runs as shown in Fig. 6.
A significant take-away from this analysis is the insight that an attention mechanism is more important for
abstracting and reducing the domain’s state space than for limiting the number of predicates to consider, as prior
work anticipated [4, 13, 36].

Result Synopsis We have shown that SPEAR enables substantial improvements in agent performance through
policy elicitation, through a novel method for communicating about state regions that substantially outperforms
prior work. These contributions enable semantically guided policy manipulation for a much broader class of
problems than was previously possible, providing a method that scales linearly with predicate count as opposed to
exponentially, advancing the state-of-the-art in autonomous coaching through new algorithms and improved
foundational capability.

6 Study 1: explanation quality evaluation

We evaluated SPEAR explanations through an IRB-approved online user study (n = 12) from a population of
graduate researchers in AI and robotics unaffiliated with this line of work in order to solicit feedback from
participants with domain familiarity. The study evaluated the effectiveness of these explanations, analyzed the
benefits of varying levels of abstraction in explanations, and determined their impact on user comprehension.

Fig. 6 SPEAR’s evaluation
in stochastic and determin-
istic evacuation domains
(25 � 25) and its perfor-
mance as state space
increases, revealing poly-
nomial computation time
with state space
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6.1 Experimental design

The experiment was structured as a single remote session where participants completed five tasks. For each task,
participants were shown an image of a scenario featuring a human agent with specific objectives. They were
informed that some scenario details were concealed and would be later revealed by an autonomous agent through
updates. Participants were tasked with choosing the optimal action from multiple-choice options, similar to [44].

Subsequently, an image illustrating the human agent’s optimal behavior was presented, accompanied by three
possible updates from the expert autonomous agent. Participants ranked these updates using subjective metrics
from established questionnaires [45, 46], considering which update, if received earlier, would most likely lead to
the desired behavior. This procedure was repeated for all five tasks. Upon completing the tasks, participants were
administered a demographic survey and an open-ended post-experiment survey.

6.2 Explanation updates

Participants were presented with three distinct types of explanation updates:
C1. No Set Cover: Here, the agent conveys good or bad states in the task by utilizing machine language in

conjunction with a string template (e.g., ‘‘There are bad rewards when Obj_1 and Obj_5 are in states: {x
=(6.5�7.5), y = (6.25)}.’’). Essentially, it provides information about crucial states with model divergence
without employing any set cover to translate them into natural language updates.

C2. Exact Set Cover: This approach is similar to C1, but key states with model divergence are communicated
using exact set cover conditions (e.g., ‘‘There are bad rewards when the red cereal and purple cereal are placed in
the trash can.’’), similar to [13].

C3. Relaxed Set Cover: This approach is similar to C2, but key divergent states are conveyed with a focus on
abstraction, although at the cost of specificity (e.g., ‘‘There are bad rewards when cereals are placed in the trash
can.’’). Example explanations provided here correspond to the scenario in Fig. 1-left.

Both ‘exact set cover’ and ‘relaxed set cover’ explanations were generated utilizing the SPEAR-IP formulation.

6.3 Experimental tasks

We chose three distinct domains for wider applicability and generalizability. Task 2 and Task 4 specifically test
both positive and negative reward updates.

Task 1 and Task 2 Navigation Tasks An agent traverses a gridworld domain from start to goal using the most
cost-effective path. Path costs vary based on good or bad state encounters, with some grid cells colored to
facilitate task abstraction and to showcase language grounding, inspired by [44].

Task 3 and Task 4 Fire Rescue Tasks Here, an agent attempts to rescue victims from a burning building,
searching a limited number of floors sequentially. The user is not aware of which floors or rooms have fire or
victims, which is later communicated via updates.

Task 5 Robotic Cleaning Task A robot removes trash from a tabletop, leaving some items believed to be trash
by participants. In this scenario, the expert agent justifies its actions by providing explanations to the participants
(Fig. 1-left), similar to [4].

6.4 Hypotheses

We hypothesized that users would rate the ‘relaxed set cover’ explanations higher than both the ‘no set cover’ and
‘exact set cover’ explanations (H1), based on the following metrics: usefulness (H1a), conciseness (H1b),
comprehension (H1c), cognitive load (H1d), decision-making (H1e), and interpretability (H1f). We also
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hypothesized (H2) that participants would prefer structured semantic explanations over numerical reward
explanations (i.e., ‘exact set cover’[ ‘no set cover’) across the same subjective metrics as H1 (H2a-H2f).

6.5 Results and analysis

We recruited 12 participants (6 males and 6 females) with ages ranging from 23 to 40 years old ðM ¼ 27:92;
SD ¼ 4:66Þ. This sample size would allow us to detect an effect size of f ¼ 0:50 with .95 power at an alpha level
of .05 (calculated using the software G*Power [47]). For each task, we assessed the explanation updates on
ranked data provided by the participants using a nonparametric Kruskal–Wallis test with explanation updates as a
fixed effect. Post hoc comparisons used Dunn’s test for analyzing explanation types for stochastic dominance.

Task 1 and Task 2. We found a significant effect in favor of the ‘relaxed set cover’ update over ‘no set cover’
and ‘exact set cover’ for usefulness, conciseness, comprehension, cognitive load, decision-making, and inter-
pretability, with all p-values below the 0.05 threshold for both Task 1 and Task 2. For Task 1, post hoc analysis
with Dunn’s Test indicated that participants consistently preferred ‘relaxed set cover’ over ‘no set cover’ for
usefulness, comprehension, cognitive load, and interpretability (p\0:05). Similarly, for Task 2, Dunn’s Test
revealed that participants rated ‘relaxed set cover’ over ‘exact set cover’ across all measures with higher means
(p\0:0001), validating H1a-H1f for both tasks.

Interestingly, in both Task 1 and Task 2, ‘no set cover’ had higher means over the ‘exact set cover’. For Task 1,
Dunn’s Test also revealed a preference for ‘no set cover’ over ‘exact set cover’ in terms of conciseness ðp\0:01Þ,
thus invalidating H2b. Similarly, for Task 2, we found the same significant results across all measures (p\0:05)
, thus invalidating H2a-H2f for Task 2. We posit that the preference for ‘no set cover’ over ‘exact set cover’ may
derive from the simplicity of these navigational tasks, implying that in simpler scenarios, providing full reward
information in numerical form might be more effective than converting to semantic form. This partially conforms
to results from [44].

Task 3 and Task 4. For both tasks, post hoc analysis using Dunn’s test favored the ‘relaxed set cover’ over ‘no
set cover’ across all measures (p\0:01), validating H1a-H1f. There were higher mean ratings in Task 3 for
‘relaxed set cover’ over ‘exact set cover’ with respect to cognitive load ðp ¼ 0:021Þ and interpretability
ðp ¼ 0:002Þ. Post hoc tests on ‘exact set cover’ and ‘no set cover’ revealed that participants preferred the former
over the latter for all measures except interpretability (p\0:05), validating H2a-H2e—the opposite of what we
saw in first two tasks. Dunn’s test also shows significant differences for Task 4 between mean ratings of ‘relaxed
set cover’ and ‘exact set cover’ for comprehension ðp ¼ 0:021Þ and interpretability ðp ¼ 0:003Þ. Similar to Task
3, post hoc tests on ‘exact set cover’ and ‘no set cover’ show a higher mean of the former over the latter for all the
subjective metrics except comprehension (p\0:05), validating H2(a,b,d,e,f). This demonstrates a stronger
preference for structured explanation as domain complexity increases.

Task 5. Post hoc analysis using Dunn’s test showed that participants favored the ‘relaxed set cover’ over the
other conditions (p\0:001) across all measures, validating H1a-H1f. This demonstrates a preference toward
structured explanations over numerical, validating H2a-H2f.

Post-experimental Survey. Participants were asked which update they would prefer to use if they had to
complete more tasks. ‘Relaxed set cover’ was preferred over alternatives. Based on a one-sample test of pro-
portions, 9/12 participants chose ‘relaxed set cover’; a greater proportion than the expected random proportion of
0.33 (z ¼ 3:09, p ¼ 0:002). Participants justified their choice for ‘relaxed set cover’ citing reasons such as
conciseness, ease of understanding, and reduced cognitive load, which align with our subjective findings from the
experiment.

Result Synopsis. In most tasks and measures, ‘relaxed set cover’ consistently outperformed both ‘no set cover’
and ‘exact set cover’. Additionally, ‘no set cover’ performed better than ‘exact set cover’ in the simpler tasks but
the trend reversed with the increase in task complexity, indicating the need for structured and simpler expla-
nations as the task complexity increases. The degree to which ‘relaxed set cover’ outperformed the other two
varied among tasks and measures. For example, in the robotic cleaning task, ‘relaxed set cover’ significantly
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outperformed the other updates in all measures. This pattern suggests that the advantages of relaxed explanations
become more apparent with increases in the state space and task complexity. In summary, our findings strongly
suggest that SPEAR-based reward explanations are not only more useful than numeric ones but also promote
better understanding, decrease cognitive load, and improve interpretability.

7 Study 2: explanation type evaluation

We conducted a follow-up IRB-approved study (n ¼ 38) with a user base recruited from the Prolific platform
(prolific.co). The focus of this study was to assess the utility of providing state-based reward updates as opposed
to traditional plan explanations [8] (i.e., step-by-step descriptions of a plan) in terms of task performance and task
awareness.

7.1 Experimental design and protocol

The study utilized a 2 � 1 between-subjects experimental design to evaluate two types of semantic guidance: (1)
plan explanation, referred to as the ‘prescriptive’ condition, and (2) reward explanation, known as the ‘de-
scriptive’ condition.

The experiment was administered online in several batches with randomly assigned conditions using the
Prolific platform. To ensure higher participant quality, we filtered for those who had both completed at least 100
approved studies on Prolific and had an approval rate of 95% or higher. This study’s methodology mirrors the
approach taken in Study 1, mentioned in Sect. 6 where participants completed the same five tasks.

For each task, participants were presented with the same scenarios as in the previous study. They were
informed that some details of the scenario were concealed and that an autonomous agent would assist them in
solving the task. We initially tested their baseline knowledge and policy preferences by asking them to select the
optimal action from multiple-choice options. Following this initial assessment, an update was provided based on
the experimental condition (more details in the next subsection). Participants made their updated choices based on
the new information. Upon completing all tasks, participants were given a demographic survey, a post-experi-
mental questionnaire, and an open-ended survey.

7.2 Explanation updates

We presented participants with two distinct types of explanation updates depending on their experimental
condition:

(1) Plan Explanation: Here, the robotic agent communicates a step-by-step plan to a human teammate. For
example, ‘‘Begin at your current position. Move one cell to your right....’’ These explanations are generated
by the GPT-4 model [48], prompted by the free-form text provided by participants in Study 1, where they
described the robot’s actions step-by-step. These final explanations were checked for correctness by experts.

(2) Reward Explanation: These explanations are similar to those presented in the ‘relaxed set cover’ condition
of Study 1 (e.g., ‘‘There are bad rewards in the purple and orange cells.’’).

7.3 Experimental tasks

We utilized the same three distinct domains and five tasks from Study 1, comprising two navigational tasks
(Tasks 1 and 2), two fire rescue tasks (Tasks 3 and 4), and one robotic cleaning task (Task 5).
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7.4 Hypotheses

Through a human-subjects study, we evaluate the following four hypotheses, partitioned into two categories:
H3: Subjective Hypotheses
H3.a: Participants will find the reward explanation more trustworthy than the plan explanation, as the trans-

parency of the recommendation leads to increased trust [4, 49, 50].
H3.b: Participants will perceive the plan explanation condition as less stressful and demanding compared to the

reward explanation condition, due to the presence of clear recommendations.
H4: Objective Hypotheses
H4.a: Participants will have a better understanding of the task when provided with a reward explanation

compared to a plan explanation, as it offers insight into the task through agent updates.
H4.b: Participants will perform similarly in both conditions (i.e., they will make the correct policy choice after

an update is provided).

7.5 Measurement

We recruited 39 participants via the Prolific platform but excluded one due to failing attention checks, leaving 38
participants (21 male, 16 female, 1 unspecified), with 19 participants per condition, aged 19–70 years
ðM ¼ 38:16; SD ¼ 13:58Þ. Of these, 16% reported working in STEM fields, and 68% reported having a bach-
elor’s degree or higher. This sample size would allow us to detect an effect size of f ¼ 0:50 with .95 power at an
alpha level of .05, based on a repeated measures ANOVA between factors design (calculated using G*Power
software).

We evaluated our hypotheses using both subjective and objective measures. We administered a post-experi-
mental survey consisting of 7-point Likert scales, similar to the one from Study 1 [51–53]. Based on these
questionnaires, we identified two key concepts to validate our hypothesis: Trust and Workload.

The Trust scale consists of 4 items: confidence, reliability, trust, and dependability (Cronbach’s a = 0.98).
Mental Load scale consists of 3 items: demandingness, hurriedness, and effort (Cronbach’s a = 0.82).

For objective metrics, we recorded the following items: Policy Accuracy (PA), the total number of tasks for
which a participant chose the correct policy; and Knowledge Accuracy (KA), the total number of tasks for which a
participant had accurate final knowledge.

7.6 Results and analysis

Subjective Analysis. To test our subjective hypotheses, we analyzed post-experiment 7-point Likert scales using
independent samples t-tests for between-condition comparisons.

The trust scale revealed a significant effect favoring the ‘descriptive’ condition over the ‘prescriptive’ condition
½tð36Þ ¼ �2:74; p ¼ :009�, with higher trust scores ðM ¼ 5:83Þ versus ðM ¼ 4:66Þ, validating H3.a.

The mental load scale results showed no significant difference ½tð36Þ ¼ �1:83; p ¼ :076�, with mean scores of
ðM ¼ 3:56 for ’descriptive’) and ðM ¼ 2:73 for ’prescriptive’), respectively. Due to the lack of statistical sig-
nificance, H3.b is inconclusive, and more data are required to definitively address this hypothesis.

However, participants provided insights that pointed toward two interesting trends. First, some participants
who were unsure and unconfident, interpreted the robot’s direct guidance in the ‘prescriptive’ condition as a sign
of confidence, leading them to stop thinking critically.

• ‘‘I followed the directions from the agent closely and ignored what I first selected.’’

Second, some participants expressed confusion and were seeking more information and understanding when
following prescriptive explanations.
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• ‘‘They [explanations] were useful but didn’t explain why the decision was the best...’’
• ‘‘...explanations were useful, but the system assumed I understood the context of the situation without

explaining anything.’’

Whereas for the ‘descriptive’ condition, many participants not only found the explanations useful but also felt that
they encouraged active thinking patterns, leading to a positive impact on trust, as evidenced by the quantitative
results:

• ‘‘The information made me make more calculated decisions.’’

These results align with previous findings in the xAI literature, suggesting that some individuals may over-trust
the guidance if they lack confidence in themselves, while others may under-trust and become frustrated if they
lack sufficient rationale for the robot’s guidance [49, 54–56]. Furthermore, insights into the robot’s decision-
making process can encourage people to engage in more active thinking patterns [34, 57, 58].

Objective Analysis. To assess our objective hypotheses, we analyzed task metrics using a nonparametric
Mann–Whitney test to evaluate differences between conditions.

First, we conducted a Mann–Whitney test to assess if there were differences in knowledge accuracy (KA)
between conditions. The analysis revealed statistical significance in favor of the ‘descriptive’ condition with
M ¼ 4:11 compared to the ‘prescriptive’ condition with M ¼ 1:82 for KA scores, with z ¼ �4:394 and
p\:0001, suggesting that participants in the descriptive condition demonstrated higher knowledge accuracy per
task scores than those in the prescriptive condition. These findings serve to validate H4.a. On the other hand, no
statistical differences were observed in policy accuracy (PA) scores between the ‘descriptive’ with M ¼ 4:31 and
‘prescriptive’ with M ¼ 4:74 conditions, with z ¼ 1:42 and p ¼ 0:157. These results support H4.b, indicating
that participants in both conditions achieved higher PA scores and predominantly made the correct choice after an
update was provided (refer to Fig. 7). Therefore, these findings suggest that while participants in both conditions
were able to identify the correct policy, those in the ‘descriptive’ condition not only identified the correct policy
but also exhibited better task awareness.

Result Synopsis In our study, the reward-based explanations consistently outperformed the plan explanations in
fostering a higher perception of trust and enhancing users’ task understanding, thus improving their policy
decisions. Due to the opaqueness of plan explanations, this approach failed to update users’ task awareness and
led some people to overtrust the guidance. These results suggest that the utility of reward explanations extends
beyond mere decision support, offering insights into the robot’s decision-making process and fostering a better
understanding of tasks, thus promoting active thinking patterns in users.

Fig. 7 Comparison of mean
scores for knowledge and
policy accuracy between
descriptive and prescriptive
conditions. Results from
the Mann–Whitney test
highlight that the descrip-
tive condition (reward-
based explanations) not
only facilitated correct pol-
icy elicitation but also
enhanced task awareness,
outperforming the prescrip-
tive condition (plan
explanations)
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8 Robotic application: multiagent cleaning

In this section, we illustrate the application of the policy elicitation process in a scenario involving two
heterogeneous robotic agents, specifically robots operating with different state representations. This effectively
demonstrates the utility of SPEAR’s symbolic reward update in facilitating agent-to-agent manipulation.

Our core insight of policy elicitation relies on modifying an agent’s behavior to a desired policy by updating
their reward function with targeted feedback in the form of semantic explanations (symbolic updates) during task
execution (refer Sect. 3 for more details). This allows our method to operate at a level of abstraction that does not
depend on the recipient’s underlying state space representation, instead only requiring a similar vocabulary of
planning predicates.

In many applications, multi-agent robotic systems have no guarantee of operating with identical state repre-
sentations. Similarly, private entities, such as those in autonomous driving, may not want to share their pro-
prietary reward functions with competitors. Therefore, we leverage common grounding (e.g., language) to
communicate updates for efficient behavior modification during the task for repairing another agent’s policy.

Assumptions. We implicitly assume a shared predicate grounding between multiple agents (i.e., the same
predicate, even if they have different state mappings, generally means the same thing to each agent) even if they
operate using different state representations, such that a common symbolic policy update is feasible. While the
predicate grounding need not be exactly the same, as different state spaces are unlikely to have one-to-one
mappings, we assume the possibility of having a shared natural language via a set of predicates even if it is not
exhaustive or comprehensive.

8.1 Robot-to-robot policy elicitation

Here, one agent needs to correct the policy of a second robotic agent to prevent it from removing specific items during
a pick and place task (Fig. 8). Importantly, these robots do not operate in the same state space, and therefore cannot
directly communicate reward function updates to each other. In this scenario, the Rethink Robotics Sawyer has been
tasked with clearing trash from a table, and is operating with the malformed belief that all objects on the table’s
surface are trash. The KinovaMovo is observing this scene and has accurate knowledge about the environment (i.e.,
it knows that certain objects in the scene aren’t trash). As Sawyer’s reach expresses intent to remove one of the items
that isn’t trash, Movo detects that Sawyer’s policy is incorrect. Movo corrects Sawyer’s behavior by providing an
update for its reward function, allowingSawyer to compute a better policy.We accomplish this reward update step by
generating semantic expressions about the reward function in parts of the state space (i.e., predicate-grounded natural
language communicating about a region of negative reward) for Sawyer using SPEAR.

Fig. 8 (Left) Sawyer (red robot) views a misinformed policy for a tabletop cleaning task as Movo (black robot) moves into
position to assist. (Center) Movo, from its perspective views the scene with the correct policy and watches Sawyer remove
the correct (green) objects from the table. Movo then observes Sawyer reach for one of the incorrect (red) objects and
delivers a verbal reward update. (Right) Sawyer computes an update to its planner thus aligning with the desired policy
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Within this task, Sawyer used a series of ArUco markers [59] to track the 6-DOF poses of various objects
(states) on the tabletop. Using these poses, Sawyer systematically transferred all items classified as trash to the
waste bin using an interruptable pick and place action. As Movo observes Sawyer, it detects Sawyer’s end
effector reaching for one of the energy drinks on the table, thus indicating the intent to remove that object, and
signaling to Movo that Sawyer’s policy was malformed. Using SPEAR, Movo is able infer Sawyer’s erroneous
belief from this observed action (that a non-negative reward is associated with putting the energy drink in the
trash). Movo performs a forward rollout with the inferred policy of Sawyer to predict which state transitions with
negative reward Sawyer will reach. Next, Movo computes an updated policy for Sawyer by determining which
states should be assigned negative reward and which of the available predicates are needed for communicating it
with Algorithm 2. A DNF formula of predicates that covers the desired states is then computed and communi-
cated by Movo through natural language: ‘‘There is a Bad Reward when energy drink is in the trash’’. Finally,
Sawyer uses shared predicates to map the communication into its own state space, update its reward function
accordingly, and reconverge a repaired policy, showing successful application of the SPEAR framework.

9 Discussion and conclusion

Limitations and opportunities. Our policy elicitation formulation relies on belief estimation. If the inference of the
human’s reward function Rh is poor, it will also lead to the degradation of SPEAR’s feedback quality for policy
elicitation. To accommodate this, we formulated our design to be modular, allowing each component to be easily
replaced by any state-of-the-art method [40, 60–62], provided it takes similar input and provides the required
output.

Additionally, we assume users can interpret natural language descriptions of predicates, which we validated
through our user study. However, predicate interpretability can vary, often depending on the creator and indi-
vidual scenario, potentially necessitating the hand-engineering of these predicates for each domain. A possible
avenue for future research could explore using large language models (LLMs) to make this predicate generation
more robust and generalizable. Similarly, in this work, we use string templated responses for policy elicitation,
which is not ideal for a conversational agent. Policy explanations from autonomous agents are expected to be
conversational and dialogue-based [19, 63]. A direct extension of this work would look into integrating an LLM
framework with predicate-based grounding for human reward coaching, leveraging language grounding from
predicates alongside the broad contextual generalizability of LLMs.

Finally, our method requires specifying a reward performance threshold s to determine what constitutes ‘‘ac-
ceptable’’ behavior improvement. This threshold is domain-specific and typically tuned by an expert, reflectingwhat
is considered a failure or suboptimal outcome in a given context. By adjusting s per domain or even per user, one can
tailor the stringency of policy corrections to match different risk tolerances and performance expectations, thereby
enhancing user experience and accessibility [64, 65]. For example, novice users might prefer a more lenient s for a
gradual learning curve, whereas high-stakes applications might use a stricter s for safety.

Conclusion. In this work we define the problem of policy elicitation, the manipulation of a human’s behavior
through the use of semantically (natural language) grounded reward updates, and present an optimization-based
approach for solving it at scale. We introduce a novel integer programming-based algorithm that renders policy
explanation [13] and policy manipulation [4] techniques feasible for use in applications substantially larger than
previously possible. Our method leverages relaxed explanations, using overstatement or understatement, to
deliver concise and useful feedback even with limited shared language. We demonstrate the utility of these policy
explanations for both expert and novice users through a series of human-subject studies. Our results indicate that
these relaxed reward-based explanations not only enhance individuals’ policies but also decrease cognitive load
and improve decision-making, all while preserving interpretability. Additionally, we show that these explanations
provide insights into the robot recommender’s decision-making process, foster a better understanding of tasks,
and thus promote active thinking patterns in users, while also facilitating the desired correction of policies.
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