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Abstract—Learning from Demonstration (LfD) is a powerful
approach that allows novice users to teach robots new skills.
However, the quality of user-provided demonstrations is a crucial
factor in determining the performance of the learned skill. Poor
demonstrations may result in poorly performing learned models,
leading to unsafe robot execution and reduced trust. Existing
modes of demonstration, such as kinesthetic teaching or teleop-
eration, have specific advantages and shortcomings that make one
preferable over the other depending on the context. For instance,
kinesthetic demonstration offers accurate skill representation but
can be challenging for untrained users and entirely infeasible
for certain robot types or environmental contexts. In contrast,
teleoperation does not rely on physical manipulation, expanding
the scope of use cases, at the cost of being unintuitive for
complex, high degree-of-freedom robots, potentially resulting in
poor demonstrations. To address this tradeoff, we propose a novel
demonstration input method, extending the recently proposed
instrumented tongs technique, wherein a tracked pair of tongs
is used by the human demonstrator to serve as a proxy for a
robotic end-effector. We combine this method with an augmented
reality (AR) interface to visualize and obtain live assessment on
what the robot is learning from the provided demonstration, in
essence introducing the real-time feedback benefits of physically
manipulating a robot to an input method which does not suffer
from the ergonomic and feasibility drawbacks of kinesthetic
demonstration. We provide a detailed description of our novel
demonstration input system and its intended capabilities. Finally,
we propose a human-subjects study to evaluate the effectiveness
of our method on practically grounded robotic applications, such
as mailbox delivery, glue tracing, and stacking.

Index Terms—Learning from Demonstration, Augmented Re-
ality, Robot Learning, Human-Robot Interaction, User Interfaces

I. MOTIVATION

Learning from Demonstration (LfD) methods enable users
to teach robots through demonstration, without requiring
programming expertise. This approach provides a flexible
and adaptable mechanism for robot control, making it suit-
able for use in dynamic or human-centric environments [1].
However, the quality of demonstrations provided by users
is highly impactful on the performance of learned skills.
Existing demonstration methods, such as kinesthetic teaching
and teleoperation, have specific benefits and drawbacks that
make them more or less appropriate for specific applications
[2]. Kinesthetic demonstration excels in skill representation
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Fig. 1: The ARPOC-LfD system integrates teleoperated instru-
mented tongs, serving as a surrogate for a robotic end-effector
during demonstrations, with an augmented reality-based inter-
face. This interface allows users to visualize in real-time how
a virtual robotic agent would execute the demonstration as if
it were an actual robot, using online pose optimization to offer
self-correcting feedback, thereby enhancing the quality of the
demonstration data.

but faces challenges in certain physical situations, while
teleoperation bypasses physical interaction but may struggle
with complex robots. To address these issues, we propose a
novel method that combines the benefits of both kinesthetic
and teleoperation-based demonstration methods by leveraging
instrumented tongs (a teleoperation device serving as a proxy
for the robot end-effector) and an AR-based interface. We call
this method Augmented Reality-based Pose Optimization for
Constrained Learning from Demonstration (ARPOC-LfD).

The mode of interaction chosen for an LfD system plays
a critical role in capturing the intended goals of the human
demonstrator, affecting the quality of the demonstration and
the fidelity of the learned models. Furthermore, for successful
human-robot collaboration, robots must be able to adapt to
changes in the environment and incorporate human prefer-
ences when necessary [3], [4]. Making these input methods
more accessible and user-friendly to end-users is necessary to
ensure the safe and effective deployment of robots in real-



world environments [5], [6]. By improving the quality of
demonstrations and enhancing the robot’s ability to adapt to
changes in the environment, LfD methods can enable more
robust, generalizable, and safer learning models.

Towards these end goals, ARPOC-LfD enables users to
generate demonstration trajectories using instrumented tongs
as a stand-in for the robotic end-effector without the traditional
uncertainty introduced by the correspondence problem, while
AR holograms of the robot are closely tracked within the user’s
visual field (see Figure 1). This approach overcomes chal-
lenges in teleoperation by providing real-time, in-environment
visualization of how a virtual robotic agent would track the
end-effector, similar to kinesthetic demonstration. Through
AR visualization, ARPOC-LfD improves the transparency and
adaptability of teleoperation devices such as instrumented
tongs, allowing users to assess the quality of a provided
demonstration, accepting or rejecting demonstration data after
replaying it post-task.

The core contributions of this work are as follows:
• An online feasible pose-optimization system that targets

user-supplied end-effector poses provided by an instru-
mented tong device to generate real-time pareto-optimal
robot configurations.

• An augmented-reality-based interface that provides users
with a visual hologram of a robotic agent that tracks the
instrumented tongs as they provide a demonstration in
real-time.

• A post-task AR visualization of demonstrated trajectories
that allows users to accept or reject the demonstrations.

• A proposed human-subject study evaluation of the
ARPOC-LfD system involving real-world, practically
grounded robotic manipulation applications.

II. RELATED WORK

A. Robot Learning from Demonstration

Learning from Demonstration (LfD) refers to a collection
of methods used to teach robots how to perform tasks by
observing human input [7]. The goal of demonstration is to
convey the nature of a skill to a robot in such a way that the
learned model closely resembles the latent ground truth model
held by the demonstrator [1]. In LfD applications, a human
user typically interacts with a robotic system by providing a
demonstration through one of many possible input modes, such
as kinesthetic demonstration. While the mode of demonstration
can vary, it is essential that the robot’s learned behavior
aligns with the intended task. After the user provides the
skill demonstration, the system learns the intended behavior or
model through one of the three broad classes of learning and
representation methods: plan learning, functional optimization,
or policy learning [8].

There are various modalities of human-robot interaction
(HRI) for robot skill learning, including passive observa-
tion, teleoperation, and kinesthetic demonstration. Kinesthetic
demonstration is a popular and widely used method of LfD
systems [2], [7], [9]. When performed correctly, kinesthetic

demonstration can provide a precise and accurate represen-
tation of the skill being learned [9], [10]. However, kines-
thetic demonstration may be challenging for novice users
who lack training, resulting in sub-optimal demonstrations
[2]. Additionally, there are many instances where kinesthetic
demonstration is not feasible (e.g., if the robot is large or
otherwise incapable of being physically manipulated, or if the
operational environment is too dangerous for humans)

Teleoperation is an alternative approach to kinesthetic
demonstration, which does not require physical manipulation
of the robotic agent but instead relies on a controlling device
[1], [11]. Teleoperation may not always provide an intuitive
means of controlling the robotic agent, especially for compli-
cated high-degree-of-freedom robot agents. A difficult-to-use
controller can result in poor agent behavior, as the user cannot
easily overcome the poor mapping of teleoperation inputs to
control outputs. In the context of LfD, this difficulty can lead
to poor demonstrations [2], [8] or be cognitively burdensome
to the operator during demonstration [12].

One approach to improving the effectiveness of teleoper-
ation is to use a proxy device that creates a more intuitive
mapping between the controller and the agent. For example,
Fang et al. [13] used a data glove as a proxy for the
end-effector, providing target points for the robot as a set
of demonstrations. Similarly, Praveena et al. [2] introduced
instrumented tongs that serve as a proxy for the end-effector.
These methods are intuitive for users as they use their own
hand to demonstrate, rather than physically manipulating the
robotic arm as in kinesthetic demonstration or attempting to
learn how to use a difficult controller.

The challenge with using data gloves or instrumented tongs
as a proxy for the end-effector is that control over the degrees
of freedom of the robot is no longer provided by the user,
making reliance on kinematics equations crucial for producing
agent configurations [2]. This approach only supplies pose
targets, which may present challenges towards generating
feasible agent configurations, especially given the redundancy
of high degree-of-freedom manipulator arms. ARPOC-LfD
addresses this issue by utilizing the online pose-optimization
framework CollisionIK [14] to generate robot configurations
in real time that maintain feasibility and avoid collision states.
During a demonstration, users generate pose targets, and the
optimization engine produces configurations that satisfy the
pose target, avoid collisions and joint limit constraints, and
comply with any included constraint terms. The integration
of task-space constraint terms allows for configurations that
closely adhere to task-specific constraints, improving the qual-
ity of demonstrations.

B. Augmented Reality within Robotics

AR interfaces are effective for scenarios where in-situ
visualization within the environment is desired [15]. Research
has demonstrated that augmented reality interfaces can signif-
icantly enhance human-robot collaboration by facilitating new
methods of enhancing robotic control [16]–[18], enabling safe
movement in shared spaces [19], [20], and promoting effective



teamwork through the communication of robot knowledge and
intended plans [3], [21], [22]. This motivated us to utilize
an AR interface in combination with instrumented tongs to
address some of the challenges associated with teleoperated
proxy devices. Specifically, ARPOC-LfD utilizes augmented
reality (AR) to achieve two primary functionalities: 1) real-
time holographic visualization of the robotic agent, which
tracks with the instrumented device as users provide demon-
strations to enable users to self-correct their demonstration,
and 2) a replay option that enables users to replay the
demonstrations and accept or reject them as needed.

The inspiration for using AR as a mechanism for self-
correction in ARPOC-LfD was drawn from prior research
in psychology and HRI. Contrary to the notion that error
avoidance should be the ultimate goal of learning, studies
by Metcalfe et al. indicate that errorful learning followed by
corrective feedback is more beneficial to both students and
teachers alike [23]. Moreover, Freedberg et al. describe a
study that suggests both positive and negative feedback are
helpful for the learning process, but negative feedback may
be more advantageous [24]. Within the realm of human-robot
interaction, the use of visualization as a feedback mechanism
has been shown to enhance collaboration [17]–[19], [25].

The second functionality of ARPOC-LfD, which enables
users to replay their demonstrations, is inspired by the work
of Luebbers et al. [5]. In their work, they developed an
augmented reality (AR) system called ARC-LfD for con-
strained learning from demonstration, which allows users to
maintain, update, and adapt learned skills through in-situ
visualizations. The ARC-LfD system enables users to examine
a sample trajectory from a learned skill visualized in AR
through an overlay in the workspace environment. This skill
visualization improves safety by enabling operators to preview
robot behavior without the need for actual skill execution [26].

III. SYSTEM DESIGN

The ARPOC-LfD system consists of two components: a
hardware stack and a software stack. The hardware stack
involves the use of instrumented tongs, which serve as a proxy
for the end-effector during demonstrations (see Figure 2). The
software stack is composed of two subsystems (see Figure 3)
that communicate through the Robot Operating System (ROS).
The first subsystem is an online feasible pose-optimization
subsystem that generates feasible robot configurations in real-
time. The second subsystem is an AR subsystem that provides
live, real-time visualization of a robot hologram as it tracks
the instrumented tongs during demonstrations.

A. Instrumented Tongs

Our design for the instrumented tongs was inspired by
Praveena et al. [2]. In their study, Praveena et al. introduced a
novel input method for users to provide demonstrations, taking
inspiration from kitchen tongs. They observed that despite the
clumsy form of pinch grasp of kitchen tongs, people could
adeptly use them to perform a wide range of manipulations
(e.g., serving foods like spaghetti). The instrumented tongs act

as a proxy for the robot gripper’s end-effector while provid-
ing demonstrations. They compared the instrumented tongs
with more traditional forms of input methods, such as free-
hand manipulation, kinesthetic guidance, and teleoperation,
and found that the instrumented tongs provide high-quality
demonstrations and a positive experience for the demonstrator
while offering good correspondence to the target robot.

In our design, we track the instrumented tongs using an
OptiTrack motion capture system via an infrared marker, as
illustrated in Figure 2. We use two separate groups of markers
to enable the system to detect a closed gripper based on the
center-point distance between each group.

Fig. 2: Instrumented tongs utilized in the ARPOC-LfD system.
The tongs are tracked using the OptiTrack motion capture
system via infrared markers. The two distinct groups of
markers enable the system to detect a closed gripper based
on the center-point distance between the groups.

B. Online Feasible Pose-optimization Subsystem

The pose optimization subsystem utilizes a multi-objective
non-linear constrained optimization program to generate real-
time pareto-optimal configurations. This optimization engine is
an extension of CollisionIK, a Rust-based software developed
by Rakita et el. [14]. Task constraints are incorporated as terms
in the multi-objective function, allowing for the integration
of multiple constraints alongside collision avoidance, self-
collision avoidance, and joint limit constraints implemented
in the CollisionIK software.

C. Augmented-reality Subsystem

The second subsystem within the ARPOC-LfD software
stack is designed to enable real-time visualization of a robot
hologram tracking the instrumented tongs during demonstra-
tions, utilizing an AR headset. Specifically, the Microsoft
HoloLens 2 is employed to display a rendered robot agent,
such as a Sawyer robotic arm, as a hologram to users.
These visualizations are aligned such that the end-effector
of the holographic agent coincides with the end-point of the
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Fig. 3: A schematic of the ARC-LfD system architecture: The
user (blue) provides demonstrations using an instrumented
tong, along with optional constraint parameters. Through a
Robot Operating System communication layer, the feasible
pose optimization subsystem (green) delivers real-time joint
configurations to the AR subsystem (red). The AR subsystem
enables users to view the real-time holographic robot config-
uration and replay the demonstrated trajectory post-task for
acceptance or rejection. Once demonstrations are approved by
users, they are sent to the robot learning system (purple).

instrumented tongs (see Figure 1). The tongs are tracked via
the OptiTrack Motion Capture system, which produces pose
targets for the optimizer based on the position and orientation
of the tongs in the environment. The system can also determine
whether the tongs are open or closed, based on the distance
between the track position of each side of the tong.

To provide visual feedback on tracking error, the system will
utilize a color-changing robot, indicating any discrepancies
between the position of the tong and the resulting end-effector
position. This feedback is based on a threshold distance, deter-
mined by the forward kinematics of the optimizer-generated
robot configuration. Furthermore, ARPOC-LfD includes a
feature that enables users to replay demonstrations and accept
or reject them as needed.

ARPOC-LfD employs two feedback mechanisms to facil-
itate self-correction in human demonstrators. The primary
feedback mechanism involves holographic visuals of a robot
agent tracking pose targets provided by an instrumented tongs
device. The second feedback mechanism provides an indica-
tion of the divergence between the virtual holographic end-
effector and the physical target of the tong. The greater the
tracking error, the more pronounced the indication that the
user is providing an unobtainable pose target.

D. Interaction Flow

The interaction flow of ARPOC-LfD aims to enable users
to generate demonstration trajectories of robot configurations
produced by the online pose optimization subsystem, as illus-
trated in Figure 4. Initially, users supply pose targets using

instrumented tongs tracked by the OptiTrack motion capture
system (Step 1, Figure 4). These pose targets are then fed
into the feasible pose-optimization engine, which generates
a Pareto-optimal robot configuration that best targets the
provided pose, while optimizing for static collision avoidance,
self-collision avoidance, dynamic obstacle avoidance, and task
space constraints (Step 2, Figure 4). If the user is currently in
the midst of a demonstration, configurations are transmitted
to the AR subsystem, which then generates holograms of the
robot agent in the user’s visual field via Microsoft Hololens
(Step 3, Figure 4). Upon completion of a potentially desirable
demonstration, users are able to replay the entire configuration
space trajectory on demand (Step 4, Figure 4).

The final step in the interaction with ARPOC-LfD involves
using the visual feedback of the latest robot hologram or
the trajectory as a whole to ensure that the demonstrated
behavior matches the intended action. One of the significant
challenges in using devices as proxies for teleoperation is
the lack of control over the robot’s degrees of freedom.
Additionally, instrumented tongs may not provide immediate
insight into the robot agent’s capabilities, such as reachability,
or whether the robot will execute the intended behavior
correctly. ARPOC-LfD addresses these limitations through its
real-time visualization feature, which enables users to observe
a robot hologram tracking the instrumented tongs during
demonstrations. This real-time visualization provides users
with insights into how their demonstrations would track if an
actual physical robot were present. Additionally, the system’s
ability to replay demonstrations empowers users to accept or
reject a demonstration if it is deemed inconsistent with their
intended action.

IV. PROPOSED SYSTEM EVALUATION

This section outlines the proposed human-subjects study
that aims to evaluate the effectiveness of the ARPOC-LfD
system in three real-world grounded task scenarios for robot
manipulators.

A. Experimental Design

The proposed study will use a 3x1 between-subjects de-
sign, where users will be randomly assigned to one of
three conditions: 1) kinesthetic demonstration, 2) instrumented
tongs demonstration without AR visualization, and 3) in-
strumented tongs demonstration with AR visualization (full-
stack ARPOC-LfD system). A between-subjects design was
selected to obtain more objective results on the effectiveness
of each form of demonstration and to avoid learning effects.
Participants in each condition will be asked to demonstrate
three tasks: a mailbox delivery task, a glue tracing task, and a
stacking task, with at least three demonstrations for each task.

B. Experimental Conditions

Condition 1 - Kinesthetic Demonstration: Participants
will physically move a robotic manufacturing arm (a Rethink
Robotics Sawyer) through the intended skill, tracing out the
trajectory the participant is attempting to teach the robot.
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Fig. 4: The ARPOC-LfD interaction flow diagram. The bottom
half indicates system processes whereas the top half indicates
how the user interacts with the system. ARPOC-LfD enables
users to input pose targets using instrumented tongs (1) that
are processed by a feasible pose-optimization engine (2) to
generate a Pareto-optimal robot configuration. This config-
uration is transmitted to the AR subsystem to create robot
agent holograms (3). Users can confirm that demonstrated
behavior aligns with intended action using visual feedback
from the latest robot hologram (5) or trajectory replay (4),
made possible by the system’s real-time visualization feature.

Condition 2 - Instrumented Tongs Demonstration, no
AR: Participants will use the instrumented tongs device to
mimic the robot’s end-effector and manipulate objects for the
intended skill, similar to Praveena et al. [2]. The instrumented
tongs resemble an ordinary pair of kitchen tongs, with minimal
sensors/motion tracking apparatus attached to it. The posi-
tion and rotation of the device will be continuously tracked
throughout the demonstration to provide trajectory data using
OptiTrack. The physical Sawyer robot will not be present
in this condition - participants will only interact with the
instrumented tongs device.

Condition 3 - Instrumented Tongs Demonstration with
AR Visualization: This condition involves the same input
device as Condition 2, but with the addition of an augmented
reality interface. Participants will wear a HoloLens 2 headset
while demonstrating tasks using the instrumented tongs. The
headset will display a virtual 3D model of Sawyer following
the instrumented tongs with its arm in real-time, providing
visualization of how Sawyer would perform the task. After
providing a demonstration, participants will be able to replay
the demonstration by issuing a command with their headsets
to accept or reject the provided demonstration.

C. Experimental Tasks

Participants will be asked to provide a minimum of three
demonstrations each for three tasks. These tasks are designed
to be challenging in specific way, which may make one form
of demonstration easier than the others. Some tasks may favor

the precision of kinesthetic demonstration, while others may
favor the convenience and ease of using the instrumented
tongs. The purpose of these tasks is to provide a diverse set
of scenarios that can effectively evaluate the different forms
of demonstration.

Task I - Mailbox Delivery: The goal of this task is for
participants to demonstrate delivery of an object to a mailbox
(see Figure 5a). The task consists of four subtasks: 1) opening
the mailbox door, 2) picking up a small block, 3) placing the
block inside the mailbox, and 4) closing the mailbox door.
This task represents a real-world scenario where objects need
to be manipulated and placed in a confined space.

The opening of the mailbox is a particularly challenging
movement to demonstrate, especially using kinesthetic demon-
stration. Precise control of the end-effector is required to grasp
the handle and to open and close the door.

Task II - Glue Tracing: Here, participants are required
to demonstrate the tracing of a dummy glue stick around the
perimeter of an object, (see Figure 5b). The following subtasks
are required for a successful demonstration: 1) picking up the
glue stick from a jar, 2) avoiding an unregistered collision
object (it will not be included in any collision avoidance
mechanism), 3) tracing around the object on the workbench
and, 4) returning the glue stick back to its receptacle.

This task is likely to be more advantageous for kinesthetic
demonstration as the instrumented tongs approach might not
have the fidelity needed to successfully provide a demonstra-
tion.

Task III - Stacking: In this task, participants will be
demonstrating the stacking of multiple objects in the center of
the workspace environment (see Figure 5c). The task requires
the participants to pick up each of four colored blocks in a
specified order and stack them on top of each other.

The blocks are placed at the corners of the workspace
near the robot’s operating space limits, which emphasizes the
importance of demonstrating in a manner that the robot can
feasibly reach the blocks.

D. Measurement and Evaluation

Here we describe the various objective and subjective
measures used to assess user experience and the quality of
provided demonstrations to evaluate ARPOC-LfD against the
two baseline conditions. There are three objective measures:
demonstration trajectory mean warping distance, physical
robot feasibility percentage, and task execution percentage.

Demonstration Trajectory Mean Warping Distance: To eval-
uate each user’s set of demonstrations, we will calculate the
mean warping distance. We will generate a representative tra-
jectory of the set using the Gaussian Mean Regression (GMR)
methodology [9], [27], [28]. This representative trajectory
will serve as the candidate trajectory for the Dynamic Time
Warping distance measure. We will use this distance measure
to calculate the mean and variance of the set of trajectories
warped against the GMR-produced candidate.
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Fig. 5: Our proposed evaluation tasks include: a) Mailbox Delivery - participants showcase opening a mailbox, inserting an
object, and closing it, b) Glue Tracing - participants show tracing with a dummy glue stick around an object’s perimeter, and
c) Stacking - participants exhibit stacking multiple objects at the center of the workspace environment.

Physical Robot Feasibility Percentage: We will test each
user’s set of demonstrations for robot execution feasibility and
calculate the success rate as a percentage.

Task Execution Percentage: We will test the ability of
demonstration trajectories to complete the task successfully
when executed on a physical agent and report the success
rate as a percentage.

We will also use two broad classes of subjective measures
to evaluate and compare the demonstration trajectories from
each condition: expert demonstration analysis and subjective
questionnaires.

Expert Demonstration Analysis: Each user’s set of demon-
strations will undergo analysis by multiple non-study-affiliated
robotics experts who will rank them on a scale of 1 to 10 based
on their belief that the trajectory is a proper demonstration for
the task.

User Questionnaires: During the experiment, each study
participant will complete both between-task and post-
experiment surveys. The post-experiment surveys will incor-
porate 7-point Likert-scale items derived from established
questionnaires in the robotics and explainable AI community.
These surveys are geared towards assessing reliability and
usability (SUS) [29], trust and confidence [30], and explain-
ability [31]. Meanwhile, the between-task surveys will utilize
the NASA Task Load Index assessment [32], along with a
trust/confidence assessment.

V. CONCLUSION

In this work, we introduce a new input method for
Learning from Demonstration applications called Augmented
Reality-based Pose Optimization for Constrained Learning
from Demonstration (ARPOC-LfD). This method aims to
combine the ergonomics and broad usability of teleoperation-
based demonstration with the accurate skill representation
and live feedback from a physically embodied robot found
in kinesthetic-based demonstration. ARPOC-LfD uses instru-
mented tongs as a proxy for a robotic end-effector during

demonstration, while the real-time feasibility of joint config-
urations and the demonstrated trajectory is visualized through
an augmented reality interface. We provide a detailed descrip-
tion of each component of this proposed system. Finally, we
propose a human-subjects user study to evaluate the effective-
ness of our novel demonstration input interface on practically
grounded real-world robotic manipulation applications, such
as mailbox delivery, glue tracing, and stacking tasks.
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