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I. ABSTRACT

Goal-based navigation in public places is critical for
independent mobility and for breaking barriers that exist for
blind or visually impaired (BVI) people in a sight-centric
society. Through this work we present a proof-of-concept
system that autonomously leverages goal-based navigation
assistance and perception to identify socially preferred seats
and safely guide its user towards them in unknown indoor
environments. The robotic system includes a camera, an
IMU, vibrational motors, and a white cane, powered via a
backpack-mounted laptop. The system combines techniques
from computer vision, robotics, and motion planning with
insights from psychology to perform 1) SLAM and object
localization, 2) goal disambiguation and scoring, and 3) path
planning and guidance. We introduce a novel 2-motor haptic
feedback system on the cane’s grip for navigation assistance.
Through a pilot user study we show that the system is
successful in classifying and providing haptic navigation
guidance to socially preferred seats, while optimizing for
users’ convenience, privacy, and intimacy in addition to
increasing their confidence in independent navigation. The
implications are encouraging as this technology, with careful
design guided by the BVI community, can be adopted and
further developed to be used with medical devices enabling
the BVI population to better independently engage in socially
dynamic situations like seat choice.

II. INTRODUCTION

It is estimated that 295 million people have moderate or
severe vision impairment, of whom 43.3 million are blind.
Service dogs and white canes are the most commonly used
orientation and mobility aids for blind or visually impaired
individuals (BVI). While service dogs can cost upwards of
$50,000 initially, with $1,200 annually in care costs; white
canes are substantially more affordable costing $20-$60.
Moreover, the skills from one dog cannot be transferred
to another, making the training process labor extensive,
expensive, and not scalable. For a BVI individual, learning
to navigate safely is critical for independence.

While the white cane is the most popular assistive aid
and does well in tracing along walls, curbs and entrances, it
has very little utility in important social contexts including
finding empty chairs in a crowded public area and avoiding
contact with other pedestrians in a crowded environment.
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Fig. 1: Robotic cane system with a close-up view. The system
includes a robotic cane equipped with RealSense D455 and
T265 cameras to enable SLAM and object localization, as
well as vibrotactile motors for haptic navigation guidance.

Wang et al. [1] report that finding empty chairs in crowded
public areas is the most important mobility task with
100% of BVI people surveyed scoring it a 5 out of 5 for
importance and that the standard cane’s utility to perform
that task is extremely low (utility score of 1.29 out of 5).

Staats and Groot show that people prefer to seat them-
selves in relation to others in a way that optimizes intimacy
and privacy [2]. They found that people chose seats that were
further away from others and more often chose anchored
seats (e.g., a seat against a wall). With current technology,
BVI people are not able to independently locate empty chairs
without collision with the environment and possibly other
people, let alone able to exercise the nuances of seat choices
available to the sighted people. Moreover, the COVID-
19 pandemic has increased the need for an independence-
enabling technology, facilitating social distancing.

Through this work we present an end-to-end perceptive
robotic cane system that enables purposeful navigation in
unknown, indoor environments. We focus on the above
mentioned challenge of finding socially preferred chairs in



public areas, defined as those that optimize convenience,
intimacy and privacy.

Specifically this paper contributes,
• A novel robotic cane system that leverages computer

vision to enable socially preferred autonomous goal
selection and navigation in indoor spaces.

• An algorithm for social norm-aware chair selection,
optimizing for convenience, intimacy, and privacy.

• A novel, intuitive vibrotactile feedback system provid-
ing navigation guidance through the robotic cane’s grip.

• A pilot validation demonstrating the system’s success in
finding socially preferred seats and providing effective
navigation guidance to novice users.

III. RELATED WORK

Computer-aided assistive technology (AT) has been re-
searched and developed for over 70 years [3], yet still does
not have significant adoption from the BVI community.

1) Form Factors: Robotic navigation assistance has been
investigated in various form factors, including mobile plat-
forms, quadrupeds, wearables, and handheld cane-like de-
vices. In the CaBot project from IBM Research [4], the
team created an autonomous mobile robot in a suitcase
form factor. Their platform is capable of indoor navigation
and localization, driving next to its user, and leading them
to their destination through a haptic interface. While this
platform was an excellent testbed for haptics research, its
final weight was over 50 pounds which substantially limited
its portability and suitability for real-world deployment.
CaBot also required a map of the indoor space a priori,
which may not always be feasible. In work by Xiao et al.
[5], a quadruped is used for navigation assistance in narrow
spaces with a leash that accommodates slack, but is a loud
and potentially disruptive alternative that is a substantial
hindrance when unpowered. Wearable interfaces such as the
ALVU [1], [6] can provide a less disruptive alternative, but
imposes significant personal instrumentation and has limited
capability due to its positioning on the person. A recent
work [7] developed a wheeled smart cane that can avoid
obstacles and follow waypoints, but its powered wheel design
significantly limits the feedback from the local environment
that the cane can receive.

2) Smart Canes: Smart canes are a subset of assistive
technologies that primarily rely on either ultrasonic sen-
sors for obstacle detection and avoidance [1], [8]–[10] or
computer vision to employ algorithms typically capable of
path planning and goal-based wayfinding, as well as obstacle
detection and avoidance [9]. The most popular smart cane
systems have been developed by AssisTech1 and WeWalk2.
These products are equipped with a distance sensor and a
single haptic motor and can only relay haptic feedback when
there is an obstacle directly in front of the user and within
a certain range. These devices do not support making or
conveying navigational plans.

1https://assistech.iitd.ac.in/smartcane.php
2https://wewalk.io/en/

The majority of ‘smart canes’ surveyed utilized ultrasonic
sensors for obstacle detection and communicated proximity
and direction of the obstacle though vibrotactile motors [11],
audio alerts [9], or a combination of the two [12]–[15].

3) SLAM-based Navigational Aids: Chen et al. [16] de-
veloped a smart cane using Google Tango that performs
mapping and localization, enabling path planning. Many
SLAM approaches are prone to failures in dynamic environ-
ments [17], and recent research has made progress towards
improving performance in such environments. Alcantarilla
et al. [18] used dense scene flow to improve visual SLAM
and demonstrated greater accuracy in real world experiments
with BVI individuals. We chose to utilize online SLAM in
our system to build a persistent spatial model of the scene,
learning relevant navigation targets that can be utilized for
providing better context and for conveying denser informa-
tion than ultrasonic methods.

4) Feedback Mechanisms: Vibrotactile motors are used
to provide programmatic feedback to a BVI user as a form
of sensory substitution to convey visual information through
touch. Users feel vibration through the white cane and are
able to interpret changes in texture and elevation as well
as obstacles through direct collision, however programmable
feedback can be used to alert users of obstacles before
collision and provide navigational guidance in ways a white
cane can not. We have observed several encoding schemes
throughout the literature that use vibrotactile motors to con-
vey visual information, such as obstacles and their distance
and navigational guidance using relative position distributed
across the body as directional cues [14]. Notably, Nasser et
al., developed the ThermalCane [19], a smart cane which
encodes directional cues (go, stop, u-turn, left, and right)
into thermotactile feedback by controlling changes in tem-
perature through Peltier modules affixed to the cane’s grip.
While prior studies investigating the efficacy of vibrotactile
feedback have varied wildly in their outcomes, this is largely
due to variations in motor mounting, encoding schemes, and
number of motors used. We opted to use vibrotactile feed-
back rather than thermotactile due to potential environmental
issues that may effect the perception of temperature changes
(e.g., wearing gloves on a cold day).

Motivated by Wang et al.’s [1] identification of ‘chair
finding’ as the most important and desirable missing ca-
pability in white canes (and derivatives) and Staats and
Groot’s [2] finding that humans prefer to seat themselves
in a way that optimizes privacy and intimacy, we created
a novel perceptive robotic cane with vibrotactile navigation
feedback. To the best of our knowledge, this is the first self-
contained robotic system that can find socially preferred seats
autonomously without any external human guidance. The
presented system is simultaneously portable, useful without
power, and benefits the user with situated environmental and
social interactions that are infeasible with modern wearable
and mobile robotics approaches.



IV. DESIGN CONSIDERATIONS

We have identified four considerations for the system
design based on user feedback from two studies and observa-
tions we noted in research papers within our literature review.
The first consideration, modularity, allows for iterative im-
provements without necessitating large integration costs.The
computer vision, goal scoring algorithms, the sensors, the
compute, and the vibration motors are swappable modules
in the system. The second consideration, usability, involved
a survey of work on modifications to white canes, many
of which render the cane unusable for its original intended
purpose. The addition of wheels [7], [20], requiring a fixed
angle of the cane from the body [10], [21], and excessive use
of electronics along the cane’s length [22] are identified as
potential challenges to the user when operating the white
cane with tapping or hovering techniques. This surfaced
a third consideration, that a robotic cane should still be
able to function as a white cane for local environment
feedback, especially in case of system failure or loss of
power. Fourth, vibration motors should be collocated and
perceptile through one fingertip because of their high spatial
acuity, which mitigates the spatial and temporal effects of
perception when motors are distributed over greater distances
across the body (e.g., palm, torso, thigh) [23]. This also
allows for vibrations like those naturally experienced through
the use of an uninstrumented cane to be perceptible because
of the amount of unobstructed contact between the hand and
cane, helping ensure the third design consideration is met.

V. SYSTEM DESIGN

We developed a robotic cane capable of identifying so-
cially preferred seating [2] and planning an obstacle-free path
to reach it. The system is capable of communicating with
and guiding the user along the navigational path through
highly localized yet distinguishable vibrotactile motors that
are in contact with the tip of the thumb when placed on
the cane’s grip. The system follows a serial architecture
with three primary components — perception, planning,
and conveyance. They are designed to be modular so that
they are easily replaceable as the supporting hardware and
foundational algorithms mature.

A. Hardware Overview

The hardware as shown in the system diagram in Fig 2
consists of a cane-mounted RealSense T265 and RealSense
D455, connected to a Dell G15 laptop with an RTX 3060
GPU carried in a backpack worn by the user. The RealSense
T265 was chosen for its odometry and the RealSense D455
was chosen for RGB-depth sensing. Additionally, an Adafruit
Trinket M0 SAMD21 microcontroller is connected to the
laptop via USB to receive serial commands for controlling
the vibration motors. The microcontroller was chosen for its
small form factor. This extra hardware and its mounting sup-
port increases the weight of the cane by just (approximately)
0.33lbs, primarily located near the grip to minimize added
fatigue.

Fig. 2: Design diagram. Perception and navigation algorithms
are executed on a backpack-worn laptop, while all sensing
and haptics are mounted on the cane.

B. Software Overview: Perception

The perception of the scene begins with a SLAM algo-
rithm that creates an initial 2D occupancy grid from RGB+D
camera input as the user scans the room by turning in
place with gradual movement. 3 The odometry provided by
the Intel RealSense’s IMU has low drift, allowing for very
accurate user pose estimation. This enables accommodation
of arbitrary handle tilt, as depth readings not within a
specific height range can be discarded. The RGB+D data
are also used to find objects and project them onto the
2D occupancy grid. The system uses Detectron2 for object
detection and Mask-RCNN to obtain masks for classification.
Classification masks are superimposed on the depth channel
to estimate the depth of identified objects. Using the camera
intrinsics, objects are mapped onto the 2D occupancy grid
(Fig 3), completing the pipeline.

Challenge 1 (Data Association): Due to the system’s
high rate of movement, establishing proper data association
between object observations and previously observed land-
marks is a significant challenge. Particularly for objects that
commonly exist in groups, such as chairs, it is important that
the system be able to disambiguate between cases of nearby
similar objects and a single object detected multiple times.
For our reference implementation, we utilize an Extended
Kalman Filter to model object positions as 2D Gaussians,
providing a distribution against which to check new obser-
vations.

Challenge 2 (Exploration vs. Exploitation): Because the
system is mapping its environment online and is intended to
be usable in environments novel to the user, the decision
of how to balance exploration of the space (scanning) with
exploitation of the current map (choosing a target and
navigating to it given the available free space) is critical for
the user experience. As it is impossible to know whether
there are more (possibly more desirable) objects of interest
in the scene without performing the impractical step of fully
exploring it, we parameterized the factors involved in this

3We use a publicly available SLAM implementation by RealSense at
https://github.com/IntelRealSense/realsense-ros/tree/occupancy-mapping



decision. The system utilizes a time-based and goal score
threshold to determine when to move from exploration to
exploitation.

Fig. 3: Visualization of live data from the system. 1) SLAM
creates a 2D occupancy grid. Darker (purple) spaces indicate
higher probability of free space. 2) Recognizable objects are
projected onto the 2D grid with labels in white. 3) Goal
scoring is done via the anchor score and proximity score to
determine a navigation target. Anchor score rays are shown
in green and red, with red indicating the rays contributing to
a higher anchor score. 4) A path is found towards the goal
using the Rapidly-exploring Random Tree (RRT*) shown
in white. The unmodified RRT* path is shown in orange,
and a pruned, optimized version of that path is shown in
cyan. 5) The user’s orientation is shown in magenta, which
is used to generate the bearing error to be conveyed using
the vibrotactile motors. (a) The system selects the right-hand
side chair that has the higher anchor score due to walls on
two sides, thus increasing privacy. (b) The system selects the
left chair because there is a person close to the other chair,
thus decreasing intimacy.

C. Software Overview: Planning

We divide planning into two steps, goal selection and path
planning:

1) Goal Selection: As objects are detected and mapped
by the system, they are considered as potential naviga-
tion goals. Each object of the target class (e.g., chair)
is scored by an objective function accounting for levels
of convenience, privacy, and intimacy. Ideal goals for the
seating selection task maximize convenience and privacy
while minimizing intimacy. The system utilizes algorithms
for evaluating anchoring to regulate privacy and proximity to
balance convenience against intimacy. The objective function
is defined as the sum of normalised anchor and proximity
scores for each candidate goal object. A minimum threshold
score (referenced in Challenge 2) can be used to inform the
minimum score for a satisfactory goal candidate.

Anchor score: People prefer seats that are anchored
in the environment to increase their privacy [2]. It is a
common design choice for chairs to be anchored to large
and contiguous objects, like a table that itself is anchored
to a wall. Leveraging this, the system uses a novel anchor
measurement ray-casting algorithm (Algorithm 1) to measure
the relative anchoring of chairs using the 2D occupancy grid.
The algorithm runs a sliding window of rays emanating from
each detected chair in the scene (Green and red rays in Fig
3) to accumulate scores for each chair. Self-intersections
with the chair being evaluated are ignored (defined by an
ignore radius), otherwise the rays emanating the center
would not escape the chair itself (line 2). The sliding window
approach assigns higher scores to contiguous obstacles (e.g.,
walls). A subset of rays is defined (line 7), counting how
many of these rays intersect with occupied grid cells within
ray cast radius of the object origin (line 9-13). If
a window crosses the threshold (wall threshold), we
increase the wall counter for the chair by 1 (line 14-15)
(Fig 4). The normalized wall counter value is returned
as the object’s anchor score (line 16-17). An example from
real world data is visualized in Fig 3.

Proximity score: People also prefer seats that are at a
greater distance to others in order to decrease intimacy [2].
Considerations related to proximity are incorporated into the
goal selection optimization process through a normalized
linear cost model (Equation 1) with terms for intimacy
(Cintimacy), travel convenience (Cconvenience), objects cor-
related with signs of occupancy (Coccupied), and objects
correlated with success (Csuccess). The intimacy term pe-
nalizes goals that are closer to other humans, while the
convenience term penalizes goals (g) that are further from
the user. The object-occupancy term penalizes goals that are
near objects likely to have owners, including backpacks or
laptops, as these can be indicators that the goal is occupied
or unavailable. Finally, the object-success term increases
scores for goals that are close to alternatives or objects
correlated with more selection (e.g., a table correlates with
the existence of multiple chairs). D is used to represent
the set of all detected objects or entities, with notation
Dhuman indicating the subset of detections classified as hu-
mans, Doccupied indicating the subset of detections classified
as object classes correlated with occupancy, and Dsuccess

indicating detections classified as object classes correlated



Algorithm 1: ANCHOR SCORE PROCEDURE

Input: Chair Objects Chairs, 2D occupancy grid
Output: Normalised anchor scores
Parameters: ray cast radius, window size,

ignore radius, wall threshold
1 foreach chair ∈ Chairs do
2 rays ← [ ] of rays cast from chair.position

within ignore radius to
ray cast radius

3 n rays ← Total number of rays
4 wall counter ← 0
5 for i← 0 to n rays− window size do
6 intercepted rays← 0
7 for j ← i to i+ window size do
8 /* ray is made up of cells that it spans

over
9 ray ← rays[j]

10 Iterate over ray
11 if ray is intercepted by an occupied

cell then
12 intercepted rays←

intercepted rays+ 1
13 break

14 if intercepted rays/window size >
wall threshold then

15 wall counter ← wall counter + 1

16 chair.anchor score← wall counter

17 return Normalised anchor scores

with success. The model parameters are shown in Table I,
utilized in Equation 1, and visualized in Fig 5. While it is
possible that this approach can still select an occupied goal
if either the final ‘acceptable score’ threshold or Cintimacy

is kept very low, in practice, we found that occupied goals
(e.g., chairs) tend to receive very unfavorable scores due to
dist(goal, human) being very small. Parameter values were
manually tuned against reference scenes representative of
normal use cases. Once computed for each candidate goal,
the proximity scores are normalized. A sample result from
real-world data is shown in Fig 3b.

TABLE I: Parameters used for proximity scoring.

Parameter Role
Cintimacy = −6 Penalizes nearness to other humans
Cconvenience = 1 Rewards nearness with the user
Coccupied = −1 Penalizes nearness to failure-correlated objects
Csuccess = 1 Rewards nearness to success-correlated objects

Sprox(g,D) =
Cconvenience

dist(g, user)
+

∑
d∈Dhuman

Cintimacy

dist(g, d)2
+

∑
d∈Doccupied

Coccupied

dist(g, d)2
+

∑
d∈Dsuccess

Csuccess

dist(g, d)2
(1)

Fig. 4: Anchor scores are calculated using a sliding window
to track object-intersection density with radially cast rays.
This method gives more votes to contiguous anchoring ob-
stacles like walls. In the above example, the sliding window
at i = 0 and i = 2 only contain object-intersecting rays
(colored red, non-intersecting in green) by the wall and thus
contribute 1 each to the wall counter. Whereas the sliding
window at i = 12 doesn’t contain a sufficient density of
object-intersecting rays and thus doesn’t contribute to the
wall counter.

2) Path Planning: Once a goal is selected from the set of
detected objects (e.g., the chair with the best overall score),
RRT ∗ [24] is used to find a collision-free path from the
user’s current position. The resultant path is successively
pruned to avoid unnecessary motion through extraneous
waypoints (Fig 3). We remove extraneous waypoints by
recursively calculating the feasibility of the path between
a waypoint’s predecessor and successor.

D. Conveyance

Plans are conveyed to users through two modalities: a
verbal goal overview and vibrotactile haptic guidance.

1) Verbal goal overview: Once the goal is found, the
system generates a semantic description of the goal’s relative
location. The overview has the following template: “{Goal
Object} found about {} meters away in the {} o’clock di-
rection”, based on user patterns observed in popular human-
guided assistive applications (e.g., Be My Eyes). The distance
and direction estimates are calculated from the relative
positioning of the last determined user pose and the goal. The
verbal overview is presented to set user expectations about
the navigation duration. The phrase “with obstacles in the
path” is appended if there is not a collision-free straight-line
path to the goal to set expectations regarding the complexity
of the navigation plan. This overview is delivered via the
laptop speaker, and precedes the vibrotactile guidance.



Fig. 5: A chair’s proximity score is affected by it’s relative
position with respect to other socially meaningful objects,
humans and the user. We add the scores shown by the green
lines and subtract the ones shown by the red.

2) Vibrotactile guidance: The robotic cane utilizes a
novel vibrotactile haptic communication system, providing
navigational guidance through the grip. This is informed by
prior work that has shown that two-point vibrotactile dis-
crimination on the fingertips ranges from 2.1mm–8mm [25].
Accordingly, the robotic cane has two vibrotactile motors
(8mm ERM) affixed on the grip such that during normal use
the user will naturally position their thumb between them.
This design removes the need for additional wearables (e.g.,
haptic belts) and minimizes the area of modification on the
cane itself to maintain familiarity of feel.

Navigation information is relayed to the user by encoding
waypoint bearing error into two distinct haptic animation
patterns on each motor (left and right), creating five possible
codes for conveyance: hard-right, soft-right, straight/no ani-
mation, soft-left, and hard-left. The design decision to have
more than a single pattern per direction is rooted in literature
indicating a preference for two levels of turn (e.g., sharp left
and soft left) [26]. The soft-right and soft-left animations are
programmed at one-half the vibration intensity of the hard-
right and hard-left animation. The motors vibrate at 200 Hz.
Intended use involves the user first correcting their bearing
error by turning in-place in the direction of the corresponding
vibration motor, then walking towards the next waypoint.
A distinct animation pattern (both motors cycle between
actuating at 100% duty cycle for 750ms and then at 0%
duty cycle for 750ms for three seconds) signals the start and
stop of the plan.

One significant challenge encountered during the design
process was the observation that mounting vibrotactile mo-
tors directly to the cane causes the entire cane to vibrate,
making it very challenging to tactilely discriminate between
the vibration source as either left or right. Our system
addresses this by mounting the wires of the motors directly
to the cane grip, but allowing the motors to hover near the
surface so that the cross-section of direct contact with the
cane grip is negligible.

VI. PILOT STUDY

We conducted a pilot study (n=6; 2 male, 4 female) with
novice users for preliminary testing of the device, which
included navigating through six scenarios while blindfolded.
Participants were all sighted graduate students and had no
prior experience with using a probe (e.g., white cane) to
navigate. For testing at this stage, we follow prior work in
performing preliminary validation using blindfolded partici-
pants [7], [27]–[31] as a precursor to engaging with the BVI
population.

The pilot tests took place in a configurable 12ft × 17ft
room as shown in Fig 6, representing more complex variants
of room configurations used for similar studies of visually-
impaired navigation [1]. The room ordering is randomized
during the study to limit learning effects. Room 1 is designed
to compare a user’s proficiency in finding and navigating
to a seat in a simple single chair scenario. Room 2 and
Room 3 are designed to test the algorithmic goal-scoring
capability, locating the more socially preferred seat based on
proximity (which influences choices based on intimacy and
convenience) and anchoring (which influences seat choice
based on privacy). Cardboard boxes, bins, and suitcases are
used as obstacles throughout each of the rooms to increase
navigation difficulty.

During the experiment, users navigated through each room
twice, using the robotic cane both with and without the
verbal overview. The order of presentation of room layout
and verbal condition was randomized, with users unaware of
the number of unique layouts being presented. To begin a
trial, the participant was blindfolded and led to the starting
area (shown in gray in Fig 6) with random orientation.

Fig. 6: The three room layouts: The Room 1 layout includes
one chair and four obstacles. The Room 2 layout includes one
highly anchored chair, one unanchored chair, and four ob-
stacles. 3. The Room 3 layout consists of a highly anchored
chair next to an occupied chair, one unanchored chair, and
three obstacles. Stars denote chairs that should be chosen
according to anchoring/intimacy-based western social norms
and the gray rectangles represent the starting locations.

A. Procedure

Each user completed six scenarios while blindfolded, each
scenario comprised of a combination of Room (1,2,3) and
robotic cane with verbal overview enabled/disabled. For
each scenario, the blindfolded user was guided to a starting
location. When given the verbal “START” cue, the user was
instructed to begin by performing a scan of the room by
rotating in place. Once a plan is developed, the system’s



haptic start sequence is conveyed to the user, indicating
that they can begin navigating to a chair following the
navigation guidance provided by the vibrotactile interface.
In between each scenario, the user is disoriented by being
guided randomly around the testing area and while the room
is rearranged into the configuration for the next scenario.

B. Results

Task Completion: Within each scenario, users were
tasked with finding a suitable chair to sit in within 2.5
minutes. This task was considered successfully completed
if the user navigated to a chair and said ”FOUND”.

We obtained promising results from our algorithm that
optimized for privacy, intimacy, and convenience. Users were
able to find the highly anchored chairs in 10/12 scenarios.
We saw a similar success rate for Room 3, which had a
person (quietly) sitting in a chair next to the highly anchored
chair. The system was able to guide the users to the chair
that minimized intimacy in 10/12 scenarios, thus effectively
demonstrating the proposed proximity scoring formula’s abil-
ity to guide users toward socially appropriate seat choices.
Even in the four scenarios where the system was not able
to find the more socially preferred chair, users were still
successful in finding a chair, thus achieving a 100% success
rate in finding a seat and 83.3% success rate for finding
a socially preferred seat. In these less socially appropriate
cases, we observed that users had obtained diminished scan
coverage of the room, triggering the system to stop further
exploration of the scene and suggest the only available choice
to avoid idling for too long.

Navigation Time: Navigation time is measured starting
at the moment the user is able to begin moving, after the
plan has been calculated and the start sequence has been
communicated to them. The navigation timer is stopped once
the user comes in contact with the goal using the robotic
cane, to avoid confounds due to delays in providing the
verbal “found” cue. We used a cut-off time of 2.5 minutes
for each trial, but participants were able to find a seat within
45 seconds on average with none exceeding the cut-off.

Fig. 7: Even though the rooms had obstacles and walls, the
novice users in our study often were able to avoid collisions
with the environment entirely while navigating to their goal.

Obstacle Avoidance: A summary of the average number
of obstacles the users physically interacted within each
scenario is presented in Fig 7. Despite the fact that the rooms

were populated with obstacles and walls, we observe that due
to the vibrotacile navigation’s effectiveness users were often
able to avoid causing even a single collision while using the
robotic cane. This is an encouraging result as BVI individuals
have expressed the desire to avoid cane contacts with other
people [1]. Through this pilot study we have shown, with
inexperienced users, that one benefit of our system is to help
eliminate the socially undesirable situation of collisions with
people seated in chairs (Room 3).

User Experience: We conducted post activity surveys to
measure aspects of the user experience focused on usability
and confidence in independent navigation. We found that
the users were confident accomplishing the task with our
system, more so with the verbal overview enabled. Using a 5-
point scale, participants rated their confidence in navigation
at 4.83 ± 0.41 (verbal enabled) and 4.00 ± 0.63 (verbal
disabled), their confidence in travelling fast at 4.33 ± 0.82
(verbal enabled) and 4.00± 0.63 (verbal disabled), and their
confidence in finding the goal at 4.5± 0.84 (verbal enabled)
and 3.83±1.17 (verbal disabled). Users also rated the verbal
overview’s helpfulness at 4.67± 0.82 and the ease of use of
the system at 4.17± 0.98 (verbal enabled) and 4.67± 0.52
(verbal disabled). The users perceived their performance to
be adequate with little effort. Using the NASA Task Load
Index survey’s battery of questions (20-point scale), users
rated their performance at 16.67±3.39 (verbal enabled) and
17.00±2.61 (verbal disabled), and their effort at 7.83±4.12
(verbal enabled) and 4.67± 3.43 (verbal disabled).

Overall, pilot study participants rated the system as be-
ing highly usable and highly performant. In a post-activity
interview, they mentioned the following:
• Verbal overview - “I used the verbal instructions as a

global plan to reorient myself”,“Just having a mental
picture of how far I need to go, that was good”, “[The]
head start with the verbal announcement was a little
comforting/assuring” .

• Haptics - “Hard and soft turns were easy to distin-
guish”,“The soft vs hard vibrations helped me a lot
in determining how much to turn”,“[the] feedback was
pretty fast”.

VII. DISCUSSION

We caution the reader to exercise care to avoid drawing
conclusions about device readiness based solely on pilot tests
with blindfolded, non-BVI participants, as these are not a
reliable proxy for the (eventual) target population of this
device [28], [32]. With this pilot study we have shown a
proof of concept with regard to the hardware and software
features of the system alongside a validation of the novel
vibrotactile navigation interface, demonstrating that the cane-
mounted system is able to construct a usable environment
representation, plan within it, and effectively guide users to
an autonomously determined desired goal location based on
higher-order social features in real-time.

We observed that each user scanned the rooms uniquely,
capturing various amounts of coverage which led to varia-
tions in the amount of information obtained for each room.



We found early on that a much slower scan sequence did
not allow the algorithm to view the complete scene within
a reasonable time frame. To avoid an assumed annoyance to
the user, the algorithm calculates a path to the best available
chair (‘local optima’) after a fixed timeout is reached, even
if this means that the entire area hasn’t been scanned and the
‘globally optimal’ chair hasn’t been detected. This leads us
to believe there are opportunities to improve user experience
by exposing some of the system’s inner workings to the user
by allowing them to select their own scan time.

Interestingly, we also observed that all users performed
best (as rated by task completion, reduced navigation time,
and number of obstacles avoided) when using the robotic
cane without verbal overview, yet 5/6 users stated they
preferred the robotic cane with the verbal overview. It also
became clear that the kinesthetic feedback from the cane
resulting from the few object collisions that occurred was a
valuable signal, reinforcing the importance of maintaining
this core capability of the white cane form factor. These
observations will need to be further explored within a user
study with BVI individuals.

VIII. CONCLUSION

In this work we present a novel robotic cane system that
combines computer vision and online SLAM with a novel
vibrotacile interface to enable blindfolded participants to
identify and navigate to socially preferred seats. We tested
aspects of the system through a pilot study that provided
an initial validation for our algorithm for social-norm aware
chair selection, optimizing convenience, intimacy, and pri-
vacy. These results further demonstrated the effectiveness of
the unobtrusive, vibrotactile haptic communication channel
based on metrics of task completion, navigation time, obsta-
cle avoidance, and participant free-form feedback.
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