
Asking the Right Questions: Facilitating Semantic Constraint
Specification for Robot Skill Learning and Repair

Aaquib Tabrez∗, Jack Kawell∗, and Bradley Hayes

Abstract— Developments in human-robot teaming have given
rise to significant interest in training methods that enable
collaborative agents to safely and successfully execute tasks
alongside human teammates. While effective, many existing
methods are brittle to changes in the environment and do
not account for the preferences of human collaborators. This
ineffectiveness is typically due to the complexity of deployment
environments and the unique personal preferences of human
teammates. These complications lead to behavior that can cause
task failure or user discomfort. In this work, we introduce Plan
Augmentation and Repair through SEmantic Constraints (PAR-
SEC): a novel algorithm that utilizes a semantic hierarchy to
enable novice users to quickly and effectively select constraints
using natural language that correct faulty behavior or adapt
skills to their preferences. We show through a case study that
our algorithm efficiently finds corrective constraints that match
the user’s intent, providing a path for novice users to exploit
the advantages of constrained motion planning combined with
human-in-the-loop skill training.

I. INTRODUCTION

The increased availability and prevalence of collaborative
robotics has led to growth in our expectations for human-
robot teaming and accordingly to the roles and responsibili-
ties assigned to autonomous systems. Robots that collaborate
or work in close proximity with humans have safety-critical
requirements imposed on their autonomy, conditioned on
task-specific and collaborator-specific parameters. As these
deployments become increasingly widespread, their com-
plexity and impact of failure will grow in kind. Consequently,
a desirable and pertinent trait for such collaborative agents
is the ability to accommodate human users’ preferences
[12] and requirements [22]. For example, an assistive robot
designed to work in elder care environments should take into
consideration the different comfort levels of individuals with
whom the robot works (e.g. a desired minimum distance).
Without such considerations, the robot might potentially
cause physical or emotional harm should it behave in a
manner that violates expectations [6].

Furthermore, it is highly unlikely that these types of
interactions will only occur in the exact environments in
which such robots were trained, increasing the likelihood
of unexpected or dangerous behavior. This generalization is
a central tenet of intelligent automation: being able to utilize
a model trained in one environment within a different one
[24]. The cost functions being used by these systems to plan
or otherwise compute their behavior may not account for

The authors are all affiliated with the Department of Computer
Science at the University of Colorado Boulder. {mohd.tabrez,
jack.kawell, bradley.hayes}@colorado.edu.

∗ These authors contributed equally to this work

Fig. 1: User interacting with a Sawyer robot. Three tasks are
shown (top to bottom, left to right): 1) A cleaning task where
Sawyer attempts to move the cup from one side of the table
to the other in front of the user; 2) A pouring task where
Sawyer attempts to pour the contents of the cup into another
container; 3) A handover task where Sawyer attempts to hand
the cup to the user without spilling the contents.

crucial factors such as novel environmental artifacts and user
requirements or preferences. In this work, we introduce an
interactive algorithm to help those who use these systems to
add constraints into a robot’s planner to create safer, more
robust skills that better accommodate user specifications.

It is clear that robots must be able to adapt their behaviors
to changes in their environment, as well as to the personal
preferences of humans they encounter, to be successful
without also levying a burden on those around them. Thus
despite the many challenges it poses, in-situ learning will be
essential as even modern robots require experts to reprogram
them or guide them in the retraining of a skill [22]. Even
with state-of-the-art learning from demonstration techniques,
retraining skills to achieve reliable performance and pre-
dictable behavior takes considerable time and effort [2] or
expertise [18]. In order for robots to be able to adapt their
skills to novel environments and shifting user preferences, we
posit that new techniques enabling non-experts to leverage

the power of constrained motion planning are required.
In response to this technical challenge, we present Plan

Augmentation and Repair through SEmantic Constraints
(PARSEC): a novel algorithm that utilizes a semantic hierar-
chy to enable novice users to use natural language to quickly
select and parameterize constraints that can be applied within
a constrained motion planner to correct faulty behavior
or adapt skills to accommodate preferences. Core to this
methodology is the intuition that novice users must be able
to interact in a natural way with the robot and that constraint
discovery is greatly accelerated by organizing constraints as
leaves in a semantic tree of parameterizations. Our method
uses plain language explanations given by a user to bootstrap
a brief iterative query process that leads to the specification
of an allowable constraint set that matches their intent. The
intuitiveness of this process enables skill correction by those
without robotics or motion planning experience, making it
suitable for a wide audience. The two primary contributions
of our work are:
• PARSEC, a human-in-the-loop algorithm that facilitates

constraint annotation for motion planning problems via
a novel hierarchical semantic process

• An experimental validation and evaluation of PARSEC,
assessing its performance in three different robotic case
studies using human feedback and demonstrating a sta-
tistically significant time reduction for skill correction
compared to baseline.

II. BACKGROUND AND RELATED WORK

Learning from Human-in-the-loop. Much work has been
done analyzing the ability of human feedback to improve
robot skill performance. St. Clair and Matarić showed the
effectiveness of robot verbal feedback in human-robot task
collaborations [21]. Additionally, Sadigh et al. presented
an approach for robot production of social communication
during human-robot task collaboration to improve in situ
decision-making and team performance [19] and Meriçli et
al. contributed a method which utilizes corrective human
demonstration as a complement to an existing hand-coded
algorithm for improving task performance [16].

Similar works look into cognitive inspired architectures
that help infer task constraints from natural language and
demonstrate through user studies that natural language is the
preferred instructions method for modifying robot skills [20],
[27]. Our proposed method infers the most likely correction
of the problem, and then initiates communication with the
user to resolve the ambiguity before the skill is augmented.

Learning from Demonstration. Researchers have also
worked on learning from failed demonstrations. In a paper
by Grollman et al., humans are assumed to be sub-optimal
and incapable of performing a task correctly. Their failed
demonstrations are then used as negative constraints on the
robot’s exploration [10]. The same group of researchers in
other work speculated that in higher dimensions, additional
information from the user will most likely be necessary to
enable efficient failure-based learning [11]. Our proposed
system applies this type of information from the user to

improve interaction efficiency during failure correction.
Other researchers have focused on learning robot objective

functions from human guidance through physical corrections
provided by the person while the robot is acting [2]. A
key limitation of this technique is that it requires users
with a technical background to perform the skill correction
which keeps novice users from being able to benefit from
it [28]. Instead of physical demonstrations, humans typi-
cally use speech to provide high-level goals or teleoperation
commands for autonomy [9]. Kramer et al. [14] compared
four natural language understanding models, evaluating their
performance to understand domestic service robot commands
by recognizing the actions and any complementary informa-
tion in them. These models learn possible correspondences
between parsed instructions and candidate groundings that
include objects, regions and motion constraints. In the realm
of learning from demonstration (LfD) there has been much
focus on repairing faulty skills or even training new skills
with only a single demonstration and then providing fine
tuned skill adjustment through a user interface [15], [18].

Learning through user preference and querying. Re-
searchers have also worked on learning user preferences
over trajectories taken by robotic manipulators. Abdo et al.
used a collaborative filtering model to learn user preferences
about how best to organize objects in their environment
[1]. However, Bobu et al. showed how assuming that a
human’s desired objective lies within the robot’s hypothesis
space can lead to irrelevant task corrections [5]. These
works demonstrate the importance of having a feedback loop
between the user and the robot so that correction can occur
without confusion.

Querying users for improving performance and learning
has been an active field of research as well [26]. Cakmak et
al. categorized types of queries users preferred based on the
informativeness and ease of answering [7]. Another approach
has been for enabling a robot to recover from failures
by generating targeted assistance requests [23]. Similarly,
Biyik et al. showed another approach of learning through
queries focused on generating easy questions through greedy
maximization of information gain [4]. In Volosyak et al.,
the system actively queries the human for task goals or
execution assistance, and through speech the user provides a
high-level (e.g. “pour a drink”) and low level (e.g. “gripper
up”) instruction [25]. To the best of our knowledge, we
believe this is the first work that combines learning from
human feedback, constrained motion planning, and in-situ
iterative querying of a human user (using natural language)
to augment and repair robot skills.

III. METHODS

In this section, we introduce PARSEC (Plan Augmenta-
tion and Repair through SEmantic Constraints), an interactive
method whereby a robot iteratively queries a human collab-
orator to determine how to apply constraints to its motion
planner for improving its skill performance or robustness.
Our approach enables non-expert users to correct faulty
robot skills through natural language feedback, which our

Fig. 2: Execution loop of PARSEC, beginning with skill
execution and proceeding through constraint specification.

algorithm processes and maps to parameterized constraints
(e.g., ‘stay at least 15cm away from the human’).

While constrained motion planning has been shown to be a
powerful tool in improving robot task and skill performance,
the selection and parameterization of which constraints to ap-
ply remains an open, time consuming problem [13], [15]. Our
insight is that if we can structure the available constraints and
their parameterizations to maximize the information utility of
each question and algorithmically reduce the problem space
based on the user’s feedback, we can substantially reduce
the level of effort required to incorporate constrained motion
planning into learning from demonstration and human-in-the-
loop skill repair.

Preliminaries. PARSEC is a post-hoc method applicable
once the learning agent has been trained to execute a
specific task within a training environment, meaning the
agent already has the foundational elements of the planning
problem defined (i.e., motion planner, goal states, and cost
function). The outcome of PARSEC is a list of parameterized
constraints to apply to the motion planning problem, with the
intent that the application of these constraints will prevent
failure modes not initially captured by the planner’s cost
function. One intuitive use case is that constraints can be used
to fill in for ‘common sense’ (or user preferences) that the
cost function may not properly encode, such as applying the
constraint that a cup in the gripper must always be upright,
since the planner’s cost function may not encode avoiding
spilling the cup’s contents.

We define a constraint to be a Boolean function mapping
a state of the world to true if that state is not in violation
of the constraint represented within the function and false
otherwise (akin to STRIPS predicates [8]). For example,
min distance(object 1, object 2, distance in cm): State →
{True, False} could be a constraint that evaluates to true
only when object 1 is at least distance in cm from object 2
in the provided state vector (e.g., min distance(cup, laptop,
10) would return true if the cup and laptop are at least 10 cm
apart, false otherwise). Within PARSEC, we characterize the
parameters for constraints as either belonging to a discrete
finite set (e.g., “objects”: [’parts bin’, ’table’, ’block’] - a
list of object names in the environment) or representing a
continuous or innumerable set (e.g. “distance”: a real-valued
quantity expressed in centimeters). These sets represent the
domain knowledge of the learning agent that it can use for

specifying and communicating about constraints.
We use this domain knowledge to create an informed

structural framework for our query mechanism to efficiently
solicit user feedback, resulting in a more rapid constraint
specification process that requires less human effort. In
this section, we detail our method of intelligently querying
the human collaborator for determining beneficial motion
planning constraints.

A. PARSEC Algorithm

Being a post-hoc method, PARSEC is intended to be ap-
plied after initial skill specification or learning. The execution
flow of PARSEC can be seen in Fig. 2. We model skill
execution as solving a motion planning problem from some
initial state (s0) to any one of a set of goal states (sg ∈ Ḡ).
More specifically, our work is intended to be applied within
domains modelled as Markov Decision Processes defined by
(S,A,T) where S is the set of states, A is a set of actions
the agent can choose from, and T : S × A × S → R
is the transition function that provides the likelihood of
transitioning between two states given an action.

PARSEC requires a Boolean signal to indicate whether
the robot has successfully completed its task or if it has
failed (Fig 2: Detect Failure step). In collaborative Human-
Robot Interaction scenarios, failure may be indicated by
adverse human behaviors (e.g., human retreating from the
robot/workspace, showing annoyance, etc,.) resulting from
execution of the skill (as opposed to not being able to
plan from start to goal state). The entry point for our
approach is Algorithm 1, which interactively produces a list
of parameterized motion planning constraints when given a
motion planning problem specification, planner, and set of
possible constraint functions.

PARSEC Walkthrough. In lines 1-2, we attempt to create
a successful plan for the problem as-specified using the initial
state s0, set of goal states Ḡ, and known constraints K.
If a viable plan is generated, PARSEC returns K as no
additional constraints are necessary for completion. Other-
wise, the algorithm begins the iterative, interactive process
of constraint discovery. In line 3, PARSEC creates a tree
(Fig 3) of available constraint functions and their potential
parameter assignments (described later in Algorithm 3). This
tree forms the basis for our query mechanism and leverages
its inherent structural benefits for effective search. In line
6, RequestExplanation() solicits the user for open-ended
semantic feedback to describe how the skill is failing.

Line 7 refines the PARSEC Tree based on this feedback,
scoring each node’s estimated relevance to optimize the order
in which they are used to form queries. To build intuition for
how the PARSEC Tree is refined, consider the example in
Figure 3, where a robot may be executing a pouring skill in
the vicinity of a human by picking up a cup, moving it over a
target area, then pouring out its contents. Given the feedback
“The cup was too close”, the [cup, distance] parameterization
node in the middle of the tree would become the first node
queried in line 10, skipping other nodes that might normally
precede it ([objects], [cup, john], etc.). In lines 9-12, the

robot asks if the node is relevant to the constraint they
wish to add to the planner, iterating through the ordered
list of the root’s children until a relevant node is found
(eventually returning with no solution if no node is identified
by the human). The AskQuestion(node) call in line 10
initiates a recursive exploration down the tree until a leaf
node is confirmed (indicating a fully parameterized constraint
to add), described in Algorithm 2. Finally, lines 14-15 are
responsible for adding the newly identified constraint and
testing the skill to see if the new formulation is successful.

Inspired by the success of Bajcsy et al.’s method of
incremental skill repair [2], our method is architected to
focus on providing one new constraint with each iteration
of the main while loop until a successful skill is produced.

Algorithm 1: Plan Augmentation and Repair through
Semantic Constraints (PARSEC)

Input: Motion Planner Planner, Start state s0,
Goal state set Ḡ, Known Constraints K, List
of constraint functions C̄, List of parameter
types S̄, Dictionary mapping parameter types
to lists of valid assignments P

Output: List of parameterized constraints for skill
segment s0 → Ḡ or False on failure

1 constraints ← K;
2 if Planner.plan(s0, Ḡ, constraints) 6= ∅ then return;
3 tree ← CreatePARSECTree(C̄, S̄, P);
4 while do
5 // No successful plan from s0 to a state in Ḡ
6 response ← RequestExplanation();
7 rankedTree ← ScoreTree(tree, response, S̄, P);
8 found ← False; new constraints ← ∅;
9 for node ∈ rankedTree do

10 new constraint ← AskQuestion(node);
11 if new constraint != ∅ then
12 found←True; break;

13 if found is False then return False;
14 constraints.append(new constraint);
15 if Planner.plan(s0, Ḡ, constraints) 6= ∅ then

break;

16 return constraints;

B. PARSEC Tree Creation
The process for creating the PARSEC Tree (Fig. 3),

used as the basis for query production, is described in
Algorithm 3. The PARSEC Tree is a data structure with fully
parameterized constraints at its leaves, meant to efficiently
guide a user through the process of selecting a constraint
function and values for its parameters. To interactively select
a parameterized constraint, one could perform a depth-first
search, asking if the contents of the current node are relevant:
descending one level if ‘yes’, and moving laterally if ‘no’.
In PARSEC, we utilize semantic feedback from a human to
reduce the number of nodes and levels of the tree, further
reducing the level of effort required to select parameterized

Algorithm 2: AskQuestion
Input: PARSEC Tree Node node
Output: Fully Parameterized Constraint Node

1 // node consists of a constraint function from C̄ and
has parameters of types contained in S̄ from Alg. 1

2 // Ask user if the parameters indicated by this node
are correct

3 response ← AskUser(node.parameters);
4 if response is “No” then return False; //Wrong node;
5 if node.children is ∅ then return node;
6 // node is relevant but not a leaf node: search deeper
7 for child in node.children do
8 ans ← AskQuestion(child);
9 if ans is “No” then continue;

10 else return ans;

constraints.
The nodes of the PARSEC tree contain either param-

eter types (e.g., ‘objects’, ‘humans’, ‘robots’, ‘distance’,
etc.), combinations of parameter values (e.g., ‘cup’, ’table’,
[’cup’,’table’] etc.), or parameterized constraint functions
(e.g., above(‘cup’,‘table’)). In Algorithm 3, three inputs are
required: a set of constraint functions (C̄), a set of parameter
types (S̄), and a parameter value dictionary P mapping types
(elements of S̄) to a list of valid values for each.

The set C̄ consists of all constraint function signatures
available to the robot (e.g., (C̄ = { above(object,object), be-
low(object,object), min distance(object,human,distance)}). S̄
consists of all discrete parameter types, and is used to help
logically cluster the parameter values within the tree. Finally,
P provides all of the possible parameter values that the
human could choose from, and is used to form the majority
of internal tree nodes. To accommodate continuous valued
constraint parameters within P , we add them as if they
were each a single discrete parameter value (e.g., ‘distance’)
and lazily ground them to specific values at the end of the
constraint selection process.

Following Algorithm 3, nodes are organized such that each
parent node is a subset of its children, where additional detail
is added at each level of the tree until a fully parameterized
constraint is reached at the leaves. We organize the tree
to resolve parameter values down to constraint functions
under the intuition that there will generally be many more
possible constraint functions (which are robot-centric) than
valid parameter types (which are environment-centric) within
a given scenario.

While the PARSEC Tree is helpful in guiding users to
specify valid constraints, the simple ‘20 Questions’-style
depth-first search procedure described above is tedious and
can be improved by utilizing the human for more than a
simple Boolean signal.

C. Feedback Processing

During PARSEC, the robot asks the user to explain how
the skill should be corrected. This open-ended explanation is

Fig. 3: Example of a partial PARSEC tree. Blue nodes represent parameter types, red nodes represent both grounded (e.g.,
‘cup’) and lifted (e.g., ‘angle’) parameters and combinations of parameters, and green nodes represent fully parameterized
constraints. Lifted parameters are resolved to grounded values after they are assigned to a parameterized constraint (III-B).

parsed by a natural language processing (NLP) engine that
scores each tree node in relation to the feedback given. In
a practical sense, if the user’s explanation refers to specific
objects or attributes in the environment they will receive a
higher score than objects that were not. For example, if the
robot’s domain knowledge consists of the words “computer”
and “person” and the user gives the explanation “Don’t
move near the computer” the scoring process will give a
high value to “computer” and a low value to “person”. For
our implementation, we used the Python Natural Language
Toolkit (NLTK) [3] with the WordNet [17] lexical database.

Since S̄ is the set of all parameter types and P contains
all discrete parameter values and continuous parameter iden-
tifiers, then the total working dictionary for the robot is D
where D = S̄ ∪ P . Each element di ∈ D is assigned a set
of exact match words Ei and a similarity match words Ni.
Processing a user explanation works by iterating over each
word wj in the explanation and assigning a value vi to the
each element di ∈ D according to the formula:

vi =

{
1 wj ∈ Ei

sim(wj , Ni) wj /∈ Ei

Where sim(wj , Ni) is a function that returns the highest
similarity score of the word wj when compared to each word
in Ni.
D. Node Relevance Scoring

The PARSEC algorithm can then utilize the scores given
to each element of its working dictionary to score each node
within the PARSEC tree. This is done using the scoring
function:

score =

|V̄ |∑
i=1

vi +

∏|V̄ |
i=1 vi

|V̄ |

Where |V̄ | is the number of parameters that the node
encapsulates and vi ∈ V̄ is the value given to each parameter

by the feedback processing step. The intuition behind this
function is that the summation has more value if a node
consists of parameters with more positive scores. The product
component will also be larger when the node’s parameters
contain non-zero scores, but it is discounted by the number
of parameters to keep the tree iteration from diving too deep
into the tree without high confidence in the parameters of the
node. This scoring function is used by Algorithm 1 (Line 7)
as ScoreTree to rank each node in the tree.

Additionally, if the above scoring function returns a value
of 0 and |V̄ | = 1 (the node has only a single parameter),
the score is set to a small positive value ε. This ensures
that nodes near the top of the tree will be prioritized if no
information is known (all other nodes have score = 0).

IV. EVALUATION AND RESULTS

We evaluated PARSEC using human feedback to provide
corrective constraint annotations for a Rethink Robotics
Sawyer robot (Figure 1) as it executed a collection of
three representative manipulation planning tasks. As our
algorithm is meant to expedite the constraint annotation
process, the primary objective metric of this evaluation is the
number of questions required to identify a constraint (and
its parameterization) that allows the skill’s motion planner
to successfully plan and execute the desired behavior. This
metric was chosen as a proxy for measuring the amount
of time and effort expended by the user to correct faulty
behavior from the robotic agent.

The three evaluation tasks are:
• Handoff Task: A handoff task where the robot attempts

to give a cup to a user but spills the contents in
the process of moving the cup towards the user. This
scenario is an example of faulty training where the skill
needs correction to repair a poor training. A constraint
that keeps the cup upright will repair this skill.

• Pouring Task: A pouring task where the robot is tasked
with pouring the contents of a cup into a receptacle

Algorithm 3: CreatePARSECTree
Input: Set of potential constraint functions C̄, Set of

constraint function parameter types S̄,
Dictionary mapping parameter types to lists
of valid assignments P

Output: Tree of parameter types, values, and
parameterized constraints (Fig. 3)

1 max args ← max(num function args(c) for c in C̄);
2 min args ← min(num function args(c) for c in C̄);
3 tree ← Graph(); root ← Node(‘root’);
4 tree.add vertex(root);
5 for c in C̄ do
6 if num function args(c) 6= 0 then continue;
7 tree.add vertex(Node(c));
8 tree.add edge(root, Node(c));

9 prev level ← [];
10 for s in S̄ do
11 tree.add vertex(Node(s));
12 tree.add edge(Node(root),Node(s));
13 prev level.append(Node(s))

14 for i in range(1,max args+1) do
15 cur level ← [];
16 param combinations = List of all

parameterizations (using P) of i-length elements
from power set of arg lists in C̄;

17 for pcombo in param combinations do
18 tree.add vertex(Node(pcombo));
19 cur level.append(Node(pcombo));
20 for pnode in prev level do
21 if pnode ⊂ pcombo or pcombo in

P [pnode.name] then
tree.add edge(pnode, cur level[-1]) ;

22 for c in C̄ do
23 if num function args(c) 6= i then continue;
24 // Add function c parameterized by pcombo

25 tree.add vertex(Node(c(pcombo)));
26 tree.add edge(Node(pcombo),Node(c(pcombo)))

27 prev level ← cur level;

28 return tree;

sitting on a table. Though the skill has been properly
trained, in this scenario the receptacle has been moved
from its position during training and so the robot
pours the contents in the wrong position over the table.
This demonstrates a situation where the skill has been
correctly trained but is not robust to changes in the
environment. A constraint that requires the cup to be
above the receptacle during the pouring motion will
correctly augment this skill.

• Cleaning Task: A cleaning task where the robot moves
a cup across the surface of a table in front of a user
who is performing another task sitting at the table. The
robot moves too closely to the user causing discomfort

to the person. This scenario is an example of training
that doesn’t correctly represent the user’s preferences
for how the robot should act. A constraint that keeps
the robot at a comfortable distance specified by the user
will correct this skill.

A. Case Study Setup
We trained a Rethink Robotics Sawyer robot arm to

perform the three three tasks described in IV. For each task,
we trained the robot using Concept-Constrained Learning
from Demonstration [18] both to successfully reach each
skill’s goal state as well as to fail in some aspect of the
execution as described above (by removing an important
learned constraint). We then recorded videos of the robot
succeeding and failing in the skill execution so that we had
examples of the faulty skill and correct skill in each example.

We then created a survey that requested the participant
to view the videos of each skill and describe in a single
sentence how the skill ought to be corrected. The participants
could view the videos as often as they wished and had access
to the videos of both the faulty skill execution as well as
the correct skill. This way they could directly compare the
faulty execution to the corrected behavior and so judge what
specifically needed to be changed. The survey asked them to
describe the correction as if they were talking to the robot.

We received 19 total responses to the survey with one
response having to be discarded due to the participant not
following the directions properly. Participants had varying
levels of experience with robots, ranging from novice to
expert. These 18 responses were used as the user feedback
input for each algorithm.

We tested three approaches for the skill correction that
utilized the explanations provided by users in the survey to
correct the three faulty skills:

1) NLP Method: Rank the available parameterized con-
straints (leaves of PARSEC tree) for the planner based
on the scores returned by the scoring function then
querying the user for the correct constraints by iterating
through the sorted list.

2) Tree Method: Run the PARSEC algorithm (Alg. 1)
while omitting the tree scoring from line 7, setting
rankedTree equal to tree from line 3. This explores
the PARSEC Tree from the root node using Algorithm
2 but with no prioritization of the traversal ordering by
the user’s semantic feedback.

3) Tree-NLP Method: Use the full Plan Augmentation
and Repair through SEmantic Constraint (PARSEC) al-
gorithm (Algorithm 1), leveraging the user’s semantic
feedback to accelerate traversal through the tree.

Our experiment set out to investigate the following hy-
potheses: H1: The number of queries in the PARSEC condi-
tion will be lower compared to the Semantic baseline (NLP
method) and Naı̈ve Exploration of PARSEC Tree method
(Tree method), and H2: Naı̈ve Exploration of PARSEC Tree
and PARSEC will perform better in comparison to NLP
method (due to the structural benefit from the PARSEC
Tree).

Fig. 4: Results for all tasks, with user-provided explanations binned into low-quality, high-quality, and combined categories.

B. Results

We analyze each algorithm’s performance on each task
with the user feedback from our survey, calculating the
number of questions asked before the correct constraint was
discovered. Due to the large variety of potential PARSEC
Tree constructions and the effect that node ordering would
have on the results, each algorithm was run for 100 trials
with the ordering of child nodes shuffled (before the ranking
step) to account for any ‘lucky’ ordering effect of nodes
with equal scores. This meant that that for each task we
compiled a 100×18 table of data for each of the three tasks
(18 from survey responses), where rows represent algorithm
effectiveness per explanation and the columns represent the
number of algorithm runs given that explanation. These
tables can be averaged across the rows or columns to analyze
different aspects of the results:

• Averaging across rows gives information about how
each algorithm performs on the skill as a whole given
the user feedback data. We call this type of averaging:
average by skill.

• Averaging across columns gives information about how
each algorithm performs on each explanation given
by the users. This is informational in diagnosing high
quality versus low quality explanations. We call this
type of averaging: average by explanation.

For average by explanation, we did not observe any
multimodalities in the distributed data but from the response
we noticed that some of the users were descriptive about the
recommendation (high quality explanation) and some users
were vague about the failure and how should robot correct
it (low quality explanation). This led to higher variance in
the number of queries for repair (especially in the NLP
condition). Therefore, to get the better insight we segmented
our user provided explanations into three bins: 1) high quality
explanations, 2) low quality explanations, and 3) combined
(all the explanation). We conducted an ANOVA to test effects
across our three algorithmic approaches for the average
number of queries for each task based on the quality of
explanation. For the handoff task, we found a significant
effect from the PARSEC algorithm on number of queries
for combined explanations (F (2, 51) = 3.91, p < 0.03),
confirming H1. Post-hoc comparisons using Tukey’s HSD

test (Figure 4) revealed that using PARSEC tree resulted
in a significant different level of queries, confirming H2.
Similarly, we can see that both high quality explanations
(F (2, 18) = 145.83, p < 0.0001) and low quality explana-
tion (F (2, 30) = 5.39, p < 0.01) validate H1 and H2.

The significant effect was observed for the cleaning task
using the combined explanations (F (2, 51) = 7.3, p <
0.002) and post-hoc comparison show similar results as the
handoff task (i.e., using PARSEC tree resulted significant dif-
ferent level). Similarly, observation can be seen effectiveness
of PARSEC tree from low quality explanations (F (2, 24) =
15.8, p < 0.0001). The high quality explanations show
statistical significance (F (2, 24) = 152.8, p < 0.0001) for
number of queries and Tukey’s HSD test gives significant
different level for each of the approaches. No significant
effects were found with respect to combined explanation for
the pouring task measure of number of queries (p = 0.1)
but we found the significant effect of the our algorithm for
high quality explanations (F (2, 9) = 10379, p < 0.0001)
and Post-hoc analysis reveal statistical significant different
levels because of the PARSEC tree. Results for low quality
explanation (F (2, 39) = 3.12, p < 0.06) are inconclusive
(Figure 4) but merit further investigation to confirm an effect.

Likewise, for average by skill results, we conducted an
ANOVA to investigate differences between our three algo-
rithmic approaches for the handoff task, cleaning task, and
pouring task. For the handoff task, significant effects were
found from the usage of PARSEC algorithm on number of
queries (F (2, 297) = 3362.48, p < 0.0001) and Tukey’s
HSD test (Figure 5) reveals a significantly different level
of queries for each approach. Outcomes were similar for the
cleaning (F (2, 297) = 2135.47, p < 0.0001) and pouring
tasks (F (2, 297) = 454.24, p < 0.0001) further validating
H1 and H2.

V. CONCLUSIONS

In this work, we present Plan Augmentation and Repair
through SEmantic Constraints (PARSEC), a new algorithm
that enables novice robot users to quickly correct faulty
behavior or apply personal preferences to a robot skill
through a process informed by a NLP accelerated semantic
hierarchy of queries. Our results show that PARSEC reduces
the number of queries the user is required to answer before

Fig. 5: Results for all three evaluation domains, showing average performance by each method. The full PARSEC algorithm
(Tree-NLP) provides a consistently more efficient experience in each task.

the skill is corrected as compared to a baseline algorithm
only applying semantic rankings to constraints and a base-
line algorithm that utilizes hierarchical structure to direct
queries for resolving desired parameterized constraints. In
demonstrating the benefit of combining the PARSEC Tree’s
hierarchical structure alongside a semantic analysis of the
user’s feedback, we contribute a novel method for human-in-
the-loop skill learning that merges human-robot interaction
and constrained motion planning.

Our primary result shows that PARSEC reduces time spent
by users across three representative manipulation tasks, each
demonstrating a different application domain: correcting a
skill with faulty or incomplete training (handover task), aug-
menting a skill to perform in a novel environment (pouring
task), and adapting a skill to user preferences (cleaning task).
These results show the ability for PARSEC to be applied
to various types of robotic skills while at the same time
providing an efficient way for novice users to correct and
adapt the robot’s behavior to their own preferences.

VI. ACKNOWLEDGEMENTS

Special thanks to Himanshu Gupta and Liam Merz
Hoffmeister for their help with Python implementation and
NLP development. This work was supported in part by NSF
NRI Award #1830686 and ARL STRONG Cycle 2.

REFERENCES

[1] N. Abdo, C. Stachniss, L. Spinello, and W. Burgard. Robot, organize
my shelves! tidying up objects by predicting user preferences. In 2015
IEEE international conference on robotics and automation (ICRA).

[2] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan. Learning
from physical human corrections, one feature at a time. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, pages 141–149, 2018.

[3] E. L. Bird, Steven and E. Klein. Natural Language Processing with
Python. O’Reilly Media Inc., 2009.

[4] E. Bıyık, M. Palan, N. C. Landolfi, D. P. Losey, and D. Sadigh. Asking
easy questions: A user-friendly approach to active reward learning.
arXiv preprint arXiv:1910.04365, 2019.

[5] A. Bobu, A. Bajcsy, J. F. Fisac, and A. D. Dragan. Learning under
misspecified objective spaces. arXiv preprint arXiv:1810.05157, 2018.

[6] J. Broekens, M. Heerink, H. Rosendal, et al. Assistive social robots
in elderly care: a review. Gerontechnology, 8(2):94–103, 2009.

[7] M. Cakmak and A. L. Thomaz. Designing robot learners that ask
good questions. In 2012 7th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 17–24. IEEE, 2012.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application
of theorem proving to problem solving. Artificial intelligence.

[9] T. Fong, C. Thorpe, and C. Baur. Collaborative control: A robot-
centric model for vehicle teleoperation, volume 1. Carnegie Mellon
University, The Robotics Institute Pittsburgh, 2001.

[10] D. H. Grollman and A. Billard. Donut as i do: Learning from
failed demonstrations. In In International Conference on Robotics
and Automation, 2011.

[11] D. H. Grollman and A. G. Billard. Robot learning from failed
demonstrations. International Journal of Social Robotics, 2012.

[12] B. Hayes and B. Scassellati. Challenges in shared-environment human-
robot collaboration. In ”Collaborative Manipulation” Workshop at
the 8th ACM/IEEE International Conference on Human-Robot Inter-
action., page 8, 2013.

[13] L. Jaillet and J. M. Porta. Path planning under kinematic constraints
by rapidly exploring manifolds. IEEE Transactions on Robotics, 2012.

[14] E. R. Kramer, A. O. Sáinz, A. Mitrevski, and P. G. Plöger. Tell your
robot what to do: Evaluation of natural language models for robot
command processing. In Robot World Cup. Springer, 2019.

[15] M. B. Luebbers, C. Brooks, C. L. Mueller, D. Szafir, and B. Hayes.
Arc-lfd: Using augmented reality for interactive long-term robot skill
maintenance via constrained learning from demonstration.

[16] Ç. Meriçli, M. Veloso, and H. L. Akın. Task refinement for au-
tonomous robots using complementary corrective human feedback.
International Journal of Advanced Robotic Systems, 8(2):16, 2011.

[17] G. A. Miller. Wordnet: A lexical database for english. 1995.
[18] C. Mueller, J. Venicx, and B. Hayes. Robust robot learning from

demonstration and skill repair using conceptual constraints. 2018.
[19] D. Sadigh, A. D. Dragan, S. Sastry, and S. A. Seshia. Active

preference-based learning of reward functions. In Robotics: Science
and Systems, 2017.

[20] M. Scheutz, E. Krause, B. Oosterveld, T. Frasca, and R. Platt. Spoken
instruction-based one-shot object and action learning in a cognitive
robotic architecture. In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, 2017.

[21] A. St. Clair and M. Mataric. How robot verbal feedback can improve
team performance in human-robot task collaborations. In Proceedings
of the tenth annual acm/ieee international conference on human-robot
interaction, pages 213–220, 2015.

[22] A. Tapus, M. Maja, and B. Scassellatti. The grand challenges in
socially assistive robotics. IEEE Robotics and Automation Magazine,
14(1):N–A, 2007.

[23] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy. Asking for help
using inverse semantics. 2014.

[24] S. Thrun and L. Pratt. Learning to learn. Springer Science & Business
Media, 2012.

[25] I. Volosyak, O. Ivlev, and A. Graser. Rehabilitation robot friend ii-
the general concept and current implementation. In 9th International
Conference on Rehabilitation Robotics. IEEE, 2005.

[26] N. Wilde, D. Kulić, and S. L. Smith. Learning user preferences in
robot motion planning through interaction. In 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018.

[27] T. Williams, G. Briggs, B. Oosterveld, and M. Scheutz. Going
beyond literal command-based instructions: Extending robotic natural
language interaction capabilities. In Twenty-Ninth AAAI Conference
on Artificial Intelligence, 2015.

[28] S. Wrede, C. Emmerich, R. Grünberg, A. Nordmann, A. Swadzba,
and J. Steil. A user study on kinesthetic teaching of redundant robots
in task and configuration space. Journal of Human-Robot Interaction.

