
Robust Robot Learning from Demonstration and Skill Repair
Using Conceptual Constraints

Carl Mueller∗, Jeff Venicx∗, and Bradley Hayes
{carl.mueller, jeff.venicx, bradley.hayes}@colorado.edu

Abstract— Learning from demonstration (LfD) has enabled
robots to rapidly gain new skills and capabilities by lever-
aging examples provided by novice human operators. While
effective, this training mechanism presents the potential for
sub-optimal demonstrations to negatively impact performance
due to unintentional operator error. In this work we introduce
Concept Constrained Learning from Demonstration (CC-LfD),
a novel algorithm for robust skill learning and skill repair that
incorporates annotations of conceptually-grounded constraints
(in the form of planning predicates) during live demonstrations
into the LfD process. Through our evaluation, we show that CC-
LfD can be used to quickly repair skills with as little as a single
annotated demonstration without the need to identify and re-
move low-quality demonstrations. We also provide evidence for
potential applications to transfer learning, whereby constraints
can be used to adapt demonstrations from a related task to
achieve proficiency with few new demonstrations required.

I. INTRODUCTION

Robot skill Learning from Demonstration (LfD) is a broad
label that encompasses techniques enabling robots to acquire
skills and behaviors through human guidance. Within an
LfD framework, a human teacher typically provides ‘ground
truth’ trajectories or goal states that convey the ‘what’ and/or
‘how’ of a skill. Throughout the robotics literature, the
terms learning from demonstration [1], [2], programming by
demonstration [3], apprenticeship learning [4], and imitation
learning [5] all tend to refer to this same high level concept.

Learning by example is crucial for facilitating the
widespread adoption of robots into society and industry.
Beyond endowing robots with the ability to acquire skills
that do not have easily crafted objective functions, LfD
provides robots with the capability to learn from lay users.
By foregoing the need for expert-level knowledge about
dynamics, control theory, and programming, automation can
be made accessible to a greater diversity of end-users.

The central challenges in learning from demonstration
stem from the need to simultaneously extract information
about both the relevant feature space (e.g., configuration
space, end-effector space, distance between objects, etc.)
and allowable feature (co)variances at each step of the skill
being taught. By restricting the learning algorithm to learning
solely from the trajectories themselves, acquiring robust
models of skills can require prohibitively large families of
demonstrations, including the need to include experiential
data about rare or potentially dangerous situations. In this

∗ These authors contributed equally to this work.
Department of Computer Science, University of Colorado Boulder, 1111

Engineering Drive, Boulder, CO USA

(a) In the pouring task, the
robot must pick a cup off
of the table and pour its
contents into a bowl with-
out spilling.

(b) The placement task re-
quires a robot to avoid
colliding with an object
not modeled by its motion
planner, testing its ability
to adhere to tight motion
tolerances.

Fig. 1: Two representative tasks used for evaluating skill
repair from demonstration with CC-LfD.

work we characterize the process of increasing the robustness
of a skill as a repair task, whether through enabling it to
succeed under conditions that the existing behavioral policy
does not or by enabling more efficient solutions to an already
successful skill.

In response to the need for robust skill learning under hu-
man guidance, we introduce Concept Constrained Learning
from Demonstration (CC-LfD): a method for learning and
repairing skill policies with minimal additional demonstra-
tions. Central to our method’s success is the hypothesis that
physical trajectory demonstrations alone are a relatively low-
bandwidth signal as compared to the fusion of trajectories
with abstract concepts in the form of planning predicates
[6]. By introducing a method to propagate constraints from
constraint-annotated demonstrations into the entirety of a
skill’s training set, we are able to achieve rapid skill repair
and robust skill learning from demonstration, even if the ini-
tial training data or skill model contains errors. Through our

Fig. 2: Illustration of concept constrained skill learning from demonstration. (Left) Two trajectories with Dynamic Time
Warping (DTW) applied and illustrated constraint boundaries. (Center-Left) Graphical representation of boundary and
intermediate keyframes alongside culled keyframes that violate the variational distance threshold. (Center-Right) Keyframe
models with sampled points labeled according to conformity with required constraints. (Right) Final trajectories connecting
sampled points, contrasting constraint-aware and unconstrained results.

experiments we show that our method facilitates robust skill
learning from demonstration, providing a dramatic reduction
in the training data required for skill repair as compared to
introducing additional high-quality trajectories.

The three primary contributions of this work are:

• Concept Constrained Learning from Demonstration
(CC-LfD), an algorithm for few-shot robust skill learn-
ing from demonstration

• An application of CC-LfD to skill repair, enabling CC-
LfD to make existing skills more robust to failure with
minor additional effort.

• An experimental validation of CC-LfD for skill repair
and transfer learning implemented on a manufacturing
robot.

II. BACKGROUND AND RELATED WORK

Many modalities have been explored with respect to robot
skill learning from novice users, with three of the most
popular being graphical, imitation-based, and kinesthetic
interfaces. With graphical user interfaces, humans may be
tasked with specifying (or editing) a sequence of keyframes
for a robot to use when computing a plan [7], [8], [9]. GUIs
afford users the potential to visualize the skill captured by the
robot’s model, potentially enhancing the ‘debugging’ phase
of skill learning from demonstration beyond what is possible
without an abstracted interface. In imitation learning [10],
[11], a robot is tasked with recovering skills from human
demonstrations. This process is generally made more difficult
by the correspondence problem [12], where the robot must
also deduce the proper mapping between the human’s joints
and its own such that it can successfully replicate the demon-
strated skill. Kinesthetic teaching [13] is a process by which
a human physically guides a robot through skill execution,
bypassing the correspondence problem and removing many
of the difficulties inherent to performing imitation learning
or learning through the tele-operation of high degree-of-
freedom platforms.

As the robot is receiving ‘ground truth’ data for exe-
cuting the learned skill, a crucial decision must be made
with respect to how demonstrations are encoded and thus

generalized. At the narrow generalization end of the spec-
trum, one may consider recording the entire trajectory and
replaying the desired behavior verbatim from a known
demonstration. Such an approach is analogous to performing
inverse reinforcement learning [14] to learn a policy defined
only for states that have been seen before. At the broad
generalization end of the spectrum, one may consider only
recording a set of potential goal states and relying on a
motion planner to determine the appropriate trajectory for
the robot to follow. Of course, neither of these approaches
is likely to capture the intent of the demonstration in a
robust manner. An intermediate solution to this problem
is to encode a trajectory into a series of keyframes (or,
in industrial robotics parlance, via-points) [15], [16], [17],
providing a connected graph of waypoints for a motion
planner to traverse through. As the inter-keyframe distance
expands, more of the skill representation is pushed into
the motion planner (a search process), thereby potentially
providing flexibility during execution (e.g., allowing for
obstacle avoidance) [16], [18]. Accordingly, the distillation
of keyframes and the interpretation of trajectories between
them encompass a key challenge inherent to skill learning
from demonstration.

A secondary challenge within learning from demonstration
is the verification that the robot’s learned model accurately
reflects the instructor’s intent. Often, it is difficult to know
when sufficient training data has been received to cover
the diversity of scenarios the skill is expected to perform
within. As such, a number of interactive skill repair methods
have been proposed to address an identified deficiency in
the robot’s learned model. Jain et al. [19] propose a co-
active learning method that leverages an iterative process for
trajectory improvements, wherein a human need only provide
slight improvements with successive examples. Apart from
methods directly requesting more trajectory demonstrations,
earlier work in human-in-the-loop skill learning investigated
questions (label, demonstration, and feature queries) that a
robot could pose to a human instructor to repair and more
quickly learn skills [20]. More recent work has investigated
this concept further, showing that human augmentation of a

robot’s objective function can be better accomplished with
targeted feature queries than comparison-based queries [21].

Algorithm 1: Trajectory Preprocessing
Input: Collection of recorded trajectories C
Output: Labeled and Aligned Trajectories L

1 L, trajectoryLength ← alignWithDTW(C);
2 for i in range(trajectoryLength) do
3 activeConstraints ← {};
4 for T in L do
5 activeConstraints ← activeConstraints ∪

getConstraints(L[i]);

6 for T in L do
7 applyConstraints(L[i], activeConstraints);

/* All demonstration trajectories now have same

constraint sequence. */

8 return L

Relatedly, work from Chao et al. [22] has shown that
robots with human-grounded concepts are better posi-
tioned to transfer existing knowledge and reason about
goal states within unfamiliar tasks. Our work posits that
grounded concepts, instantiated by planning predicates (e.g.,
“is upright(cup)”), provide a rich, interpretable path for
objective function augmentation. Through combinations of
predicates associated with segments of a trajectory, one
can impose meaningful constraints within non-trivial com-
binations of features, maintaining intelligibility through a
medium of concepts familiar to a human.

Our approach addresses an important technical gap in
robot skill learning, providing a contribution to both the
keyframing and trajectory planning aspects of LfD, enabling
the application of conceptual constraints to keyframes and
trajectories (e.g., “keep the cup upright and don’t place your
end-effector over the computer”) during relevant parts of a
skill. Recent results on learning behavioral constraints from
demonstration within the human-robot interaction commu-
nity have largely focused on task ordering constraints [23],
[24], [25], whereas our approach enables the integration of
low-level motion constraints (e.g., “keep the end-effector
parallel to the table”) as well as high-level conceptual
constraints (e.g., “don’t let the cup of water and the laptop
be near each other”). We accomplish this by integrating
constraint enforcement into the trajectory planning (keyframe
sampling) process.

III. METHODS

Here, we introduce CC-LfD (Concept Constrained Learn-
ing from Demonstration), a method of learning from demon-
stration that leverages both trajectory data and constraints an-
notated during demonstrations to rapidly produce robust skill
representations. Our approach enables few-shot skill learning
and repair, as it enables the propagation of constraints from
annotated trajectories through existing unannotated training
data. It is important to note that the approach to skill repair

is to rebuild the learned model incorporating the constraint-
annotated (repair) demonstrations, rather than augment an
existing model. By leveraging logical combinations of plan-
ning predicates, taking the form of boolean state classifiers
(e.g., on table(cup)) as constraints, our method appropriately
biases waypoint sampling from learned keyframes and effec-
tively models important changepoints that may otherwise go
undetected during the keyframe clustering step of trajectory-
based learning from demonstration. In this section, we detail
both the training and execution phase of CC-LfD by first
providing a general intuition for each, followed by more
precise technical detail.

A. Skill Training

In the training phase, we seek to produce skill mod-
els that can later be used by a robot to quickly sample
successful trajectories during live execution. To accomplish
this our method requires a collection of trajectories C =
{T0, T1, . . . , T|C|}. A trajectory is defined as a sequence
of frames (or observations) T = {f0, f1, . . . , f|T |−1}, each
containing a time-stamp (t) and a vector of world state data
(s) such that f = (t, s). The world state vector consists
of the robots joint configuration, end-effector XYZ position,
and end-effector role-pitch-yaw orientation. This world state
could include other information from the environment as
well, but we restrict the world state to only include data
pertaining to the kinematics of the robotic arm itself.

As training trajectories will not generally maintain tempo-
ral alignment across frames [26], [27], [28] (e.g., f15 ∈ T0
may not represent the same point in skill execution as f15 ∈
T1), we perform trajectory alignment as a preprocessing step
(Fig. 2-left, Algorithm 1) using Dynamic Time Warping
(DTW). In contrast to traditional trajectory alignment that
strictly minimizes a running distance metric across trajectory

Algorithm 2: Model Formation
Input: Labeled and Aligned Trajectories L, Variational

Distance Threshold α
Output: Keyframe Graph G

1 kf groups ← clusterObservationsIntoKeyframe(L);
2 kfs ← buildGaussianKernelDensityModels(kf groups);
3 for kf ∈ kfs do
4 p ← generateSamplePointsFromModels(kf);
5 p ← discardConstraintViolations(p,

getConstraints(kf));
6 kf ← buildGaussianKernelDensityModel(p);

7 G ← buildDirectedGraph(kfs, L);
/* Build directed graph from keyframes using

ordering information in L */

8 p ← generateSamplePointsFromModels(G);
9 G ← cullAdjacentOverlappingKeyframes(G,p,α);
/* Remove intermediate keyframes that have a

variational distance < α with a preceeding

neighbor */

10 return G

(a) Grouping of trajectory points by keyframe. Black points
indicate inclusion within constraint transitions, while colored
points represent inclusion within intermediate keyframes.

(b) Keyframe clustering showing sparseness after the culling
process. Three boundary keyframes are represented in black,
while intermediate keyframes are represented in color. Over-
lapping clusters occur in these figures due to projection from
6D pose-space into 3D.

Fig. 3: Visualization of trajectories being clustered into keyframes before and after keyframe culling and augmentation.

states, our approach prioritizes the alignment and ordering
preservation of constraint boundaries, serving to produce
more consistent and informed results. We define a constraint
boundary as the frame fi ∈ Tn where the currently applied
set of constraints changes. This could mean a new constraint
is added or removed at that frame.

Given a collection of aligned trajectories, we produce a
directed graph where each vertex represents a keyframe: a
distribution over state space representing a waypoint within a
skill. Given initiation and goal vertices, the sequence of states
sampled from the directed path between them produces a
series of states for a motion planner to use during execution.
In our implementation, we model keyframes using Gaussian
Kernel Density Estimation [29].

B. Constraint Application During Demonstrations

During trajectory demonstration, a user can indicate the
application of constraints by annotating a frame. This is
accomplished by communicating a boolean expression (e.g.,
“is upright(cup) AND NOT near laptop(cup)”) where each
variable consists of a predefined concept at the desired frame
of the trajectory. Upon the demonstration’s conclusion, each
annotated boolean expression of constraints is evaluated from
its origination frame onward, with the constraint assumed
to apply to each subsequent frame until the expression
no longer holds true. This means that when the behavior
of the demonstration violates the constraint, the system
turns that constraint to false. As an example, a constraint
is upright(cup) applied at frame fa would propagate to all
proceeding frames until it is found to be violated by the
demonstration at fb (where b > a). The result of constraint
annotation and its post-processing is the production of in-
tervals where boolean expressions of concepts must be true.

This method of constraint annotation might restrict the types
of usable concept constraints (e.g. more abstract constraints)
but for the purposes of this paper, the methodology suffices.

C. Trajectory Alignment and Constraint Propagation

Demonstration trajectories are aligned against a chosen
reference demonstration using standard DTW [30] with a
Euclidean distance cost function. We perform an iterative
alignment process where each trajectory is rebuilt based on
the warping path provided by the DTW algorithm. This re-
sults in repeated points for certain trajectories that may align
with multiple points in another trajectory. This iterative pro-
cess repeats the DTW alignment procedure on the extended
trajectories until those trajectories have been extended to an
equivalent length (same number of samples). This enables
simple uniform sampling of points during the clustering
process without having to maintain index alignments across
all trajectories. Once the collection of trajectories are aligned,
constraints are combined across trajectories as a boolean
expression consisting of the logical AND of all constraints
(both applied and propagated) occurring at that frame index.
Thus, for a boolean expression of constraints bm,n occurring
at frame fn of trajectory Tm, we apply

bm,n =
∧
bp,n∀p ∈ {0, 1, .., |C| − 1}

D. Keyframe Clustering

Traditional keyframe clustering is performed through an
unsupervised process that, given a constellation of points in
state space, produces clusters that are well separated. As
our approach introduces annotated constraint expressions,
we utilize this additional information during the cluster-
ing step. Our method enforces the creation of boundary
keyframes consisting of trajectory data from a fixed-size

Algorithm 3: Skill Reconstruction
Input: Keyframe Graph Vertex Sequence V , Samples

per keyframe n
Output: Motion Plan M

1 waypoints ← [];
2 for v ∈ V do
3 p ← sampleValidPointsFromKeyframe(v,n);
4 p ←

discardConstraintViolations(p,getConstraints(v).);
5 if p == ∅ then return ERROR;
6 waypoints.add(maxLikelihoodPointFromSet(p,v));

7 M ← createMotionPlan(waypoints);
8 return M

window around frames that lie on a constraint transition
boundary. As mentioned previously, constraint transitions
occur when the applied boolean constraint expressions for
consecutive frames differ.

To ensure potentially valuable motion data is not dis-
carded, intermediate keyframes are produced by clustering
frames at uniform intervals between boundary keyframes.
These uniform intervals are chosen such that sample points
within a keyframe are aligned with each other according to
DTW alignment process. To prevent overfitting the demon-
strations, and thus creating a brittle skill representation, CC-
LfD models each keyframe cluster as a probability distribu-
tion over state space that we recover from its member frames.
In our reference implementation, we model the distribution
of states within each keyframe using Gaussian Kernel Den-
sity Estimation, choosing a bandwidth parameter value that
maintains the majority of probability mass in close proximity
to the observed frame. Increasing the kernel bandwidth will
expand the distribution model for the keyframe, causing a
corresponding increase in sample variation, simultaneously
increasing the flexibility of the keyframe and the likelihood
of poor skill reconstruction during execution.

To avoid keyframe overlap (which can result in back-
tracking behavior during skill execution), we perform a
culling step after keyframe clustering and modeling is com-
plete, deleting intermediate keyframes whose distributions
are too close to an immediately preceeding neighbor in the
keyframe graph (Fig. 3, Algorithm 2). This overlap is classi-
fied by a prior minimum threshold of variational distance
(δ(ki, ki−1) > α) imposed between the two distributions
over an equally sized set of points sampled from each. For a
set of n points sampled from Keyframe 0 (Pk0

∼ k0) and n
points sampled from Keyframe 1 (Pk1

∼ k1), the variational
distance between keyframe distributions is:

δ(k0, k1) =
∑

p∈Pk0
∪Pk1

|k0(p)− k1(p)|

E. Constraint-based Keyframe Augmentation

Once the graph of keyframes has been established, we
perform a postprocessing step to better fit each learned

keyframe distribution to the data and constraints that apply to
them. For each keyframe distribution, n points are sampled.
If the sampled point satisfies the constraints that apply to
the keyframe, it is accepted and added to the keyframe’s
training set. Otherwise, the point is rejected. (Algorithm 2)
As n is increased, two benefits are realized: 1) the model
bandwidth parameter can be reduced, lessening the likelihood
of outliers, and 2) the distribution will more accurately reflect
the projection of the demonstrated trajectory frames onto the
manifold where the constraint expression is true, increasing
the sampling efficiency of the distribution during runtime.

F. Skill Execution

Within CC-LfD, skill execution is accomplished by sam-
pling waypoints from an ordered sequence of keyframes
and subsequently constructing motion plans between them.
As the CC-LfD skill model encodes a directed graph of
keyframes, any path from an initiation vertex to a goal vertex
will produce a valid sequence of keyframes. Once a sequence
has been obtained, grounded waypoints from each keyframe
are obtained by sampling from each keyframe’s distribution
(Fig. 2 Center-Right)

As skill execution is likely to occur in an environment
that does not precisely match the training environment,
such as one with a different configuration of obstacles,
points sampled from keyframes may themselves be invalid
(e.g., in collision with an obstacle), be infeasible to use
in a motion plan (e.g., no valid solution), or violate the
required set of constraints for the keyframe. To overcome
this limitation, CC-LfD samples multiple states from the
keyframe’s distribution, rejecting samples that violate one of
the aforementioned validity criteria. The sample point with
the highest likelihood is retained as a waypoint for the final
motion plan (Algorithm 3).

In the event that all of the sampled states from an interme-
diate keyframe are rejected, our approach skips the keyframe
and moves on to the next in sequence. This affords flexibility
during execution at the expense of potentially sacrificing
motion cues learned from the training data, opting to push
more burden into the motion planner (as it must now plan
across a greater distance) while providing more freedom to
the final motion plan (still honoring the imposed constraints).
Should all of the sampled states from a boundary keyframe
be rejected, the skill cannot be executed as no feasible plan
could be found that is guaranteed to honor the provided
constraints.

IV. EVALUATION AND RESULTS

A. Robot Platform

We evaluate CC-LfD using the Rethink Robotics Sawyer
robot. Sawyer is a 7-degree of freedom robotic arm, with a
working envelope of 1260 millimeters and a maximum pay-
load of 4 kilograms. Our CC-LfD reference implementation,
including both skill learning and robot control software, is

implemented as a node within Robot Operating System [31]
utilizing the MoveIt! motion planning framework [32]. 1

B. Skill Repair from Poor Initial Demonstrations

We demonstrate the utility of CC-LfD through an eval-
uation involving skill repair, a domain in which the goal
is to make a brittle or ineffective skill model more effective
and robust to varying environmental conditions. Poor demon-
strations may contain usable signal to help dictate the skill
or they might purposefully provide negative signal i.e. what
not to do [33]. Thus there is motivation to show that CC-
LfD capably operates over poorly demonstrated skills. This
evaluation tests the ability of a learning method to absorb
positive aspects of sub-optimal or noisy demonstrations while
rejecting aspects harmful to the model, requiring a minimum
of additional information.

To demonstrate skill repair with CC-LfD, we utilize two
tasks common across skill learning from demonstration
literature: a compound pick-and-pour task and a precision
placement task. The first task involves picking up a cup,
moving it over a target region (another cup), and pouring
its contents into the target vessel without spilling along the
way. This task was chosen due to the complexity of having a
constraint that must only be enforced for part of the trajectory
(e.g., keep the cup upright) and is violated in other parts.

The second task involves picking up a cup, maneuvering
around an obstacle not modeled by the motion planner, and
resting the cup atop the obstacle. This task was chosen
because of its ability to illustrate adherence to motion
constraints for part of the task, requiring certain keyframes
to obey spatial rules captured by demonstrations without
the benefit of analytical models to assist (e.g., the motion
planner’s collision avoidance).

Both tasks are evaluated for success according to their
objective behavior which is defined by the intent of the task
(pouring contents of cup into target, placing cup on resting
place) and the expected constraints on the task itself (e.g.
cup must remain upright, cup must not collide with hidden
obstacle).

For each task, three low-quality demonstrations are pro-
vided as a baseline of poor performance to which additional
demonstrations must be added (these demonstrations may not
be excluded from model training) to repair the learned skill
model. Generally, a low-quality demonstration is one that
explicitly violates the chosen constraints for a given task. As
an example, in the cup pouring task, a poor demonstration
might tip the cup too far before it is over a target, prematurely
spilling contents. Other low-quality demonstrations may add
harmful variance in the keyframes of a learned skill that is
likely to degrade execution quality in naı̈ve LFD solutions.
We test two approaches to skill repair:
• CC-LfD: Train a CC-LfD model with a single

constraint-annotated demonstration and the initial low-
quality demonstration dataset.

1CC-LfD reference implementation is available at:
https://github.com/cairo-robotics/.

(a) Upright (b) Threshold (c) Violated

Fig. 4: Examples of the Upright constraint’s reference pose,
tilt tolerance, and violation.

• Naı̈ve LfD: Train a skill model with the addition
of successful high-quality demonstrations to the initial
low-quality dataset, but with constraints omitted.

In other words, we add high-quality training data to each
skill’s initial low-quality training set, build a new skill model,
and test the model by evaluating its skill executions for
success. In the CC-LfD condition we add a single trajec-
tory annotated with boolean constraint expressions during
demonstration by the human, while in naı̈ve LfD condition
we add a number of high-quality demonstration trajectories
without constraint information.

C. Concept Constraints

The evaluation system employs two concepts to showcase
the effectiveness of CC-LfD: an object being ‘upright’ and
a minimum end-effector height.

The upright constraint dictates that an object must be up-
right according to a predefined upright orientation, reference
axis, and a threshold angle of deviation that is object-specific.
The upright orientation uses a quaternion representation
of the end-effector of Sawyer. In other words, we use a
specific grasping orientation to represent the ‘uprightness’
of the cup rather than the orientation of the cup itself. The
environment reference axis defines the axis against which
rotation deviations are measured. This axis is generally the z-
axis relative to the frame of reference of Sawyer. Axis-angle
rotations around the reference axis have no bearing on the
‘uprightness’ of the object. The threshold angle is the limit
within which an object is upright compared with its current
angle of deviation. In the pouring task and placement task,
the upright constraint is used to ensure that the cup is not
tilted past its upright threshold angle (Fig. 4).

D. Results

As the robot can only manipulate its 7-DoF arm, an
‘upright’ constraint applied to a keyframe forces configu-
rations to be sampled where the object is upright within
the robot’s grasp, while a ‘minimum height’ concept forces
configurations to be sampled where the end effector pose is a
minimum height above the table underneath it. The CC-LfD
framework supports any type of concept that can be encoded
as a boolean classifier over state space.

(a) Pouring Task performance results. With CC-LfD, a skill re-
paired with a single constraint-annotated demonstration achieves a
100% success rate.

(b) Placement Task performance results. CC-LfD with a single
repair trajectory achieved a 90% success rate.

Fig. 5: Skill execution success rates for two tasks across one baseline and five skill repair experimental conditions.

E. Task Evaluation Criteria

The success of each task execution is determined by
observing whether the robot’s executed trajectory satisfies
the evaluation criteria below.

1) Pouring Task: In the cup pouring task, the robot must
lift the cup off the table, carry the cup above a certain height
until it is over top of a target, then lower and pour its contents
into the target without spilling along the way. The task is
considered a failure if at any point the robot violates these
conditions (Fig. 1 a).

2) Placement Task: In the placement task, the robot must
lift the cup off the table and place the cup on top of a
sideways crate (Fig. 1 b). Success for this task requires the
robot to place the object on top of the crate without collisions
or spills, carrying the cup above a safe height over the crate
until it is over top of the placement zone. If at any point
before placement a disqualifying event occurs, the entire task
is considered a failure.

For each task we evaluate the success or failure of the
robot’s performance based on the criteria above. We present
results from six experimental conditions investigating dif-
ferent levels of skill repair, each consisting of ten trials
per task with skill models trained using varying amounts
of low-quality (LQ) and high-quality (HQ) demonstration
trajectories. A LQ demonstration fail to successfully meet the
given task evaluation criteria. A HQ demonstration properly
executes the task according to the given task evaluation
criteria. A constraint-annotated trajectory is one that is
performed correctly while also being annotated with concept
constraints.
• Baseline: 3 LQ trajectories
• 7 Repairs: Baseline + 7 HQ trajectories
• 14 Repairs: Baseline + 14 HQ trajectories
• 21 Repairs: Baseline + 21 HQ trajectories
• 28 Repairs: Baseline + 28 HQ trajectories
• Constrained: Baseline + 1 HQ constraint-annotated

trajectory
Our results (Fig. 5) show that a single constrained demon-

stration is enough to repair the poorly trained baseline skill
for both tasks, with sufficient variation across executions to
guarantee that this is not an artifact of model overfitting. The
low-quality baseline demonstrations result in incorrect skill
performance nearly always, while a single constrained repair-
ing demonstration results in nearly perfect skill performance,

maintaining the (allowable) feature variances provided by the
baseline training trajectories. The single failure during the
constrained condition for the placement task occurred due to
a minor obstacle collision that, while not affecting the final
placement, violated the collision avoidance success criteria.

Importantly, we observe that while the introduction of
additional high-quality demonstrations shows a trend of
improvement over the baseline, it does not quickly converge
to a high level of success. For both tasks, even twenty-eight
unconstrained HQ repairing demonstrations is not enough to
overcome the problems the model inherits from the initial
LQ training data. In all cases, states are sampled from
distributions that contain the LQ trajectories, but by using
CC-LfD the harmful aspects of these demonstrations are
successfully discarded while potentially informative signal
is maintained.

F. Applications to Transfer Learning

The keyframe constraint optimization performed by CC-
LfD can also be used to effectively generalize skills across
contexts where interpretations of constraints differ. As an
empirical proof-of-concept, CC-LfD is able to generalize the
pouring task to a new cup requiring a grasp that is orthogonal
to the grasp encountered during training (and thus, requir-
ing a very different trajectory through configuration space).
The application of the upright constraint to the new cup
universally results in skill failure, as at least one of the
boundary keyframe distributions is unable to produce any
viable samples that conform to the required constraints.

By introducing a single demonstration performed under
the new conditions, CC-LfD is able to learn a model that can
perform the skill correctly, despite the fact that the rest of its
training data was performed such that it never exhibited the
correct upright behavior. This example suggests skill transfer
as a promising application of future work extending CC-LfD.

V. CONCLUSION

In this work, we present Concept Constrained Learn-
ing from Demonstration (CC-LfD), a novel algorithm for
robot skill learning from human teachers. CC-LfD enables
a robot to both learn robust skill policies from kinesthetic
demonstration and to repair existing skills through a minimal
amount of additional demonstrations. Our results show that
the presence of a few low-quality training trajectories can
have a dramatic, negative impact on skill execution that

is difficult to overcome even with many additional high-
quality trajectories. We demonstrate that through CC-LfD,
a single well-performed constraint-annotated demonstration
can dramatically repair poor skill performance, increasing
skill robustness with minimal additional data. Our evalu-
ation confirms that CC-LfD is a time-efficient mechanism
for LfD skill repair, obtaining a remarkable decrease in
required additional training to overcome noisy or low-quality
demonstrations.

A key benefit of CC-LfD is that it does not require the
identification and removal of existing low-quality demonstra-
tions for successful skill repair. This is significant because
these trajectories may still encode useful information, and the
introduction of conceptual constraints may serve to preserve
this signal. Our preliminary empirical result in applying CC-
LfD to skill transfer offers support to the hypothesis that
useful information may still be preserved from off-task (but
related) demonstrations, effectively serving as a heuristic for
exploration in the constrained space.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] S. Chernova and A. L. Thomaz, “Robot learning from human teach-
ers,” Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, vol. 8, no. 3, pp. 1–121, 2014.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer handbook of robotics. Springer,
2008, pp. 1371–1394.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[5] G. M. Hayes and J. Demiris, A robot controller using learning
by imitation. University of Edinburgh, Department of Artificial
Intelligence, 1994.

[6] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial intelligence: a modern approach. Prentice hall Upper Saddle
River, 2003, vol. 2, no. 9.

[7] A. Kurenkov, B. Akgun, and A. L. Thomaz, “An evaluation of gui
and kinesthetic teaching methods for constrained-keyframe skills,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 3608–3613.

[8] S. Alexandrova, M. Cakmak, K. Hsiao, and L. Takayama, “Robot
programming by demonstration with interactive action visualizations.”
in Robotics: science and systems, 2014.

[9] M. Stenmark, M. Haage, and E. A. Topp, “Simplified programming of
re-usable skills on a safe industrial robot: Prototype and evaluation,”
in Proceedings of the 2017 ACM/IEEE International Conference on
Human-Robot Interaction. ACM, 2017, pp. 463–472.

[10] P. Bakker and Y. Kuniyoshi, “Robot see, robot do: An overview of
robot imitation,” in AISB96 Workshop on Learning in Robots and
Animals, 1996, pp. 3–11.

[11] S. Calinon and A. Billard, “Incremental learning of gestures by
imitation in a humanoid robot,” in Proceedings of the ACM/IEEE
international conference on Human-robot interaction. ACM, 2007,
pp. 255–262.

[12] C. L. Nehaniv and K. E. Dautenhahn, Imitation and social learning in
robots, humans and animals: behavioural, social and communicative
dimensions. Cambridge University Press, 2007.

[13] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz, “Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective,” in 2012 7th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), March 2012, pp. 391–398.

[14] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Icml, 2000, pp. 663–670.

[15] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-
based learning from demonstration,” International Journal of Social
Robotics, vol. 4, no. 4, pp. 343–355, 2012.

[16] N. Vuković, M. Mitić, and Z. Miljković, “Trajectory learning and re-
production for differential drive mobile robots based on gmm/hmm and
dynamic time warping using learning from demonstration framework,”
Engineering Applications of Artificial Intelligence, vol. 45, pp. 388–
404, 2015.

[17] B. Akgun and A. Thomaz, “Simultaneously learning actions and goals
from demonstration,” Autonomous Robots, vol. 40, no. 2, pp. 211–227,
2016.

[18] E. Pignat and S. Calinon, “Learning adaptive dressing assistance from
human demonstration,” Robotics and Autonomous Systems, vol. 93,
pp. 61–75, 2017.

[19] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning trajectory
preferences for manipulators via iterative improvement,” in Advances
in neural information processing systems, 2013, pp. 575–583.

[20] M. Cakmak and A. L. Thomaz, “Designing robot learners that ask
good questions,” in Proceedings of the seventh annual ACM/IEEE
international conference on Human-Robot Interaction. ACM, 2012,
pp. 17–24.

[21] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer
human guidance: Augmenting comparison-based learning with feature
queries,” 13th ACM/IEEE International Conference on Human-Robot
Interaction (HRI), 2018.

[22] C. Chao, M. Cakmak, and A. L. Thomaz, “Towards grounding
concepts for transfer in goal learning from demonstration,” in Devel-
opment and Learning (ICDL), 2011 IEEE International Conference
on, vol. 2. IEEE, 2011, pp. 1–6.

[23] B. Hayes and B. Scassellati, “Discovering task constraints through
observation and active learning,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on. IEEE,
2014, pp. 4442–4449.

[24] ——, “Autonomously constructing hierarchical task networks for
planning and human-robot collaboration.”

[25] S. Ekvall and D. Kragic, “Robot learning from demonstration: a task-
level planning approach,” International Journal of Advanced Robotic
Systems, vol. 5, no. 3, p. 33, 2008.

[26] A. Vakanski, I. Mantegh, A. Irish, and F. Janabi-Sharifi, “Trajec-
tory learning for robot programming by demonstration using hidden
markov model and dynamic time warping,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 4,
pp. 1039–1052, 2012.

[27] B. Hayes and J. A. Shah, “Interpretable models for fast activity
recognition and anomaly explanation during collaborative robotics
tasks,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 6586–6593.

[28] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 144–151.

[29] R. O. Duda, P. E. Hart, D. G. Stork, et al., Pattern classification.
Wiley New York, 1973, vol. 2.

[30] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” Knowledge and information systems, vol. 7, no. 3, pp.
358–386, 2005.

[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[32] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[33] D. H. Grollman and A. Billard, “Donut as i do: Learning from failed
demonstrations,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 3804–3809.

	Introduction
	Background and Related Work
	Methods
	Skill Training
	Constraint Application During Demonstrations
	Trajectory Alignment and Constraint Propagation
	Keyframe Clustering
	Constraint-based Keyframe Augmentation
	Skill Execution

	Evaluation and Results
	Robot Platform
	Skill Repair from Poor Initial Demonstrations
	Concept Constraints
	Results
	Task Evaluation Criteria
	Pouring Task
	Placement Task

	Applications to Transfer Learning

	Conclusion
	References

