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Abstract— In this work, we introduce PokeRRT, a novel
motion planning algorithm that demonstrates poking as an
effective non-prehensile manipulation skill to enable fast manip-
ulation of objects and increase the size of a robot’s reachable
workspace. We showcase poking as a failure recovery tactic
used synergistically with pick-and-place for resiliency in cases
where pick-and-place initially fails or is unachievable. Our
experiments demonstrate the efficiency of the proposed frame-
work in planning object trajectories using poking manipulation
in uncluttered and cluttered environments. In addition to
quantitatively and qualitatively demonstrating the adaptability
of PokeRRT to different scenarios in both simulation and real-
world settings, our results show the advantages of poking over
pushing and grasping in terms of success rate and task time.

I. INTRODUCTION

Humans engage naturally in multiple forms of dexterous
manipulation that involve grasping, pushing, poking, rolling,
and tossing objects [1], [2]. Consequently, the development
of similar functionality in autonomous machines is an essen-
tial milestone for robotics and an area of active research with
fundamental work needed ahead [3]. However, the human
manipulation skill that has attracted the most attention from
roboticists is prehensile manipulation, or grasping. Manip-
ulation by grasping is attractive primarily because, once an
object is grasped, it generally does not need to be tracked
over time and uncertainty on its state is reduced. However,
grasping is limited in capability by i) reachability of the robot
arm, ii) mechanical design limitations of the end-effector, iii)
physical properties of the object being manipulated, and iv)
accuracy of the perception system.

Non-prehensile manipulation (i.e., any kind of manipula-
tion not involving grasping, hereinafter referred to as NPM)
offers a complementary solution to prehensile manipulation
by significantly expanding the size (intended as the set of
reachable configurations) and dimensionality (intended as
the number of degrees of freedom) of the operational space
of even the simplest robot manipulator [4]. In other words,
NPM can be used to manipulate objects when conventional
grasping-based manipulation is infeasible or unnecessary.
Realistic robot applications might expect the robot to operate
in dense clutter, in the presence of occlusions, or in ungras-
pable configurations—for example, the target object is in a
pose that is not directly reachable by the end-effector or the
target object is too large or too heavy. These applications may
result in failure modes for robot operation through traditional
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Fig. 1: This work demonstrates poking as a skill and a
failure recovery tactic to increase the portfolio of capabilities
at the robot’s disposal. Here, an object (blue) is located
in an obstacle-rich (red) workspace with non-overlapping
reachable regions for each robot defined by beige and green
shading. The first robot manipulates the object into the green
region successfully via poking (path shown in green), but
fails to do so via pushing or grasping (paths shown in orange
and purple, respectively).

grasping. Consequently, in such situations it is beneficial to
complement the robot’s skillset with NPM primitives. Indeed,
NPM can be used both as a skill and a failure recovery
mechanism, which points to the versatility of this paradigm.

In this work, we demonstrate the utility of NPM through
poking, a skill that allows fast object manipulation and
expands the size of a manipulator’s reachable workspace.
The basic idea behind this work is detailed in Figure 1.
Poking is a NPM primitive wherein a robot end-effector
applies an instantaneous force to an object of interest to
set the object in planar translational and rotational motion
(impact phase). The object eventually slows down and comes
to rest due to Coulomb friction (free-sliding phase). Poking
has a multitude of desirable properties [5] that makes it
complementary to grasping and serves as a generalized
form of pushing where applied impulse forces are low.
Advantages such as the ability of impulse forces to break
static friction between the object and the surface it rests on
can be desirable in manipulation scenarios where precision is
important. Instantaneous impact is also an important property
in the execution of certain tasks, such as striking a nail
with a hammer. In this paper, we design and implement a
sampling-based planner called PokeRRT which decouples
skill modeling and path planning and specifically focuses on



leveraging the following advantages of poking over pushing
and grasping: i) it does not require constant contact between
the manipulator and the object, therefore greatly expanding
the size of the manipulator’s workspace, ii) it does not
impose restrictions on the shape or size of objects that can
be manipulated, and iii) it is inherently faster and therefore
capable of covering large distances in short periods of time.

After discussing related work (Section II), we present
PokeRRT which leverages a simulation model for poking
to generate a planar, collision-free path between two points
in the object configuration space (Section III). We conclude
with an experimental validation (Section IV) and discussion
(Section V) of PokeRRT in both simulated and real-world
settings.

II. BACKGROUND AND RELATED WORK

Non-prehensile manipulation planning and control:
Research in non-prehensile manipulation dates back to the
nineties [4], with the vast majority of prior work leveraging
heuristics or analytical models based on a number of simpli-
fying assumptions. Related work has focused on skills such
as throwing [6], sliding [7], poking [8], [5], and pushing [9].

More recently, pushing manipulation has received in-
creased attention due to availability of large-scale datasets
[10] and the inherent controllability of the skill. Pushing
operates under the quasistatic assumption to reduce modeling
complexity, thereby limiting robot velocities and acceler-
ations. On the contrary, poking must consider (and plan
around) the non-negligible effects of inertial forces: the
object continues moving after robot–object contact is broken,
thus allowing for faster planar manipulation of objects. Past
work in pushing manipulation incorporates simulation in a
motion planning loop to get to the next feasible state [11].
Additional contributions in push modeling involve combining
object state estimation with affordance prediction from image
data to determine contact points for achieving the optimal
push [12] and creating a deep recurrent neural network
model to model push outcomes for a variety of objects [13].
However, both approaches use a greedy planner operating
in obstacle-free environments. In this work, we propose
a sampling-based framework that is capable of planning
collision-free paths in the object configuration space.

The need for specialized impulse-delivery apparatus to
achieve poking is explored in [5]. This makes planar manipu-
lation of objects cumbersome due to the manual relocation of
the apparatus required. In this work, we use a standard open-
chain robot arm to deliver impulses using joint space velocity
control. In order to generate impulse-based action paths that
respect robot mechanics and represent feasible object motion,
we use a simulation environment as the forward physics
model in the planning loop.

Physics understanding for robotics: Past work on un-
derstanding physics to improve modeling and estimation can
be divided into three categories: purely analytical models
[14], data-driven learning approaches [15], [16], and hybrid
methods [17] that combine the two. These methods are
inextricably tied to the research on NPM planning detailed

above, as a dynamical model is a pre-requisite of any NPM
system.

Learning-based approaches for machine understanding of
intuitive physics as precursors to more informed predictions
are abound [18], [19]. Current approaches use data-driven
methods which do not take advantage of existing empirical
models of mechanics. More recent are works on combining
analytical and learned models [20], [21], [6] and learning
mechanical properties of objects through real-world interac-
tions [22]. However, a majority of the techniques still rely on
pushing, which can only operate within the robot’s reachable
workspace.

In all, evidence from prior work suggests that pok-
ing—sometimes referred to as “releasing” or “impulsive
manipulation”—is a relatively unexplored primitive. Analyti-
cal models for poking are restricted to rotationally symmetric
objects or situations where pusher design and dynamics
can be geometrically modeled [5], [23]. In this work, we
use PyBullet [24] as the forward physics model in our
planner. While simulation may not accurately capture real-
world dynamics [25], the closed-loop nature of our planning
framework compensates for this approach as we explain
later. This effective use of simulation captures essential
characteristics of robot and object dynamics cheaply and
safely.

III. MATERIALS AND METHODS

In this section, we present an overview of the proposed
approach for poking (Section III-A), its characterization in
a simulated environment (Section III-B), and our motion
planning algorithm, PokeRRT, that leverages the simulated
environment to plan a collision-free path for the target
object through its configuration space (Section III-C). We
also introduce empirically-driven heuristics to PokeRRT that
leverage the large and quick displacement property intrinsic
to poking manipulation.

A. Formalization of the Poking Motion Primitive

Poking manipulation is modeled as a process composed of
two phases: i) impact, where the robot end-effector makes
instantaneous contact with the object; and ii) free-sliding,
where the object slides on a planar surface and comes to
a stop due to Coulomb friction. As detailed in Figure 2c,
two parameters are required to describe the first phase of
poking: the point of contact pc (i.e., where on the contour of
the object to strike), and the magnitude of the impact velocity
‖~vEE‖. Slippage at the contact point between the end-
effector and the object may lead to non-linearities; therefore,
we fix the direction of ~vEE as being normal to the object’s
contour. Importantly, in order to apply an instantaneous
force, the robot must come to a complete halt upon contact
with the object. Therefore, collision between the end-effector
and the object is treated as an elastic collision. The motor
torques applied to stop the end-effector upon contact prevent
the impulsive interaction from being truly elastic; however,
this can be safely ignored by stopping the end-effector
slightly past the contact point.
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Fig. 2: Path planning for poking consists of 2 steps: action sampling (a, b) and graph expansion (c, d). (a) Points are
sampled uniformly on the object contour (red) and filtered through a conical region originating from the target position
(green). Striking points are generated by extending away from contour points in the normal direction. (b) End-effector
velocity magnitudes are sampled for each striking point and filtered out if joint velocities are infeasible due to mechanical
limitations of the robot. (c) Feasible actions are applied in simulation to get resultant poses. (d) The resultant pose closest
to the target position is added to the planning graph.

Given a uniform-density object of mass m with a co-
efficient of friction µ whose center of mass starts in an
initial planar pose qi = (xi, yi, θi) and the control parameters
(see Figure 2c) that determine the contour of the object to
strike (pc) and the velocity magnitude (‖~vEE‖), we can solve
the second phase of poking manipulation and determine the
final pose of the object qf = (xf , yf , θf ) using a physics
simulation engine.

B. Simulation Model for Poking

In order to understand the effects of impulsive forces
on objects, we use the PyBullet physics simulation engine
[24]. PyBullet models rigid body dynamics by performing
numerical integration over time with equations of motion
to solve for object position and velocity. Joint constraints,
contact forces, and friction, in addition to external forces
such as gravity, are taken into account in the forward
dynamics solver of the engine and modeled as constraints
in a Linear Complementarity Problem (LCP).

The main point of interest when modeling impulsive
interactions is contact force. In the context of poking, contact
is primarily dominated by frictional interactions between i)
the robot end-effector and the object of interest, and ii) the
object and the environment (i.e., the object’s planar support
surface and surrounding obstacles). Analytical models for
contact make simplifying assumptions that do not fully
represent the complexity of real-world dynamics, including
the nonlinear nature of friction and actuator degradation and
latency. Additionally, they do not generalize well to a diverse
set of objects. Conversely, learning-based approaches, while
capable of achieving generalization and modeling uncertainty
and complexity, are data-inefficient. Collecting abundant and
task-representative data in real-world robotics is expensive
with regard to the time taken and the wear-and-tear caused

on a real robot through repetitive, and potentially, high-
acceleration trajectory executions such as those characteristic
to poking manipulation. Executing such trajectories and
modeling collisions along the action path with the object
and the environment is therefore far safer in simulation.

While simulation does not perfectly capture the inherent
complexity and stochasticity of real-world contact dynamics
due to the simplistic nature of the underlying analytical mod-
els used, it nonetheless provide a good balance between pure
learning and analytical models by ensuring interaction mod-
eling is both cheap and safe while encapsulating the essen-
tial characteristics of robot–object and object–environment
interactions. The closed-loop nature of our proposed motion
planner also compensates for any inaccuracies in simulation
modeling while executing poke plans in the real-world. That
is, if a resultant pose violates a predefined object pose
threshold, we compute a new poke plan from the current
object pose to the goal region. This crucial feature allows
our planner to plan feasible poke paths in simulation and
execute them in the real-world.

C. Motion Planning for Poking

Using simulation as the forward physics model in our
planning loop, we design and implement PokeRRT that takes
advantage of the inherent speed and efficiency of poking
manipulation. This global path planning approach leverages
goal and obstacle information in object configuration space
to introduce a bias into motion planning and to keep the
sampling space low-dimensional to ensure fast planning.

1) Object Configuration Space: Our planning framework
operates in the (x, y, θ) configuration space of the object.
x and y are continuous spaces confined by the limits of the
planar workspace, whereas θ is discretized in increments of
5° in the range [−180◦, 180◦).



2) Action Sampling: The proposed planner decouples skill
modeling and object path planning to allow for the evaluation
of multiple skill models which directly improve planning out-
comes. We achieve this through an action-oriented approach
by employing a series of filtering steps to pick a set of valid
actions avalid = 〈pc,‖~vEE‖〉 to apply at a given object
configuration q. A sampling approach that yields actions
which can be simulated in a physics engine is desirable since
inverse modeling of frictional contact and object motion may
either be intractable or not guarantee feasible robot motion.

In order to achieve the correct direction of motion, can-
didates for object contour points that are ideal for impact
must lie on the side nonadjacent to the target object position.
Given an object configuration q, contour points pcontour

are chosen as acceptable candidates if they lie within a cone
originating from a target pose qrand (see Figure 2a). The
target pose is sampled during path planning as described
in Section III-C.3. For each candidate contour point pc ∈
pcontour, a striking point ps is computed at a fixed distance,
dextend, from pc in the normal direction away from the
object (see Figure 2c). The robot engages in joint space
velocity control to apply a poke in its operational space
by moving from ps to pc at velocity ~vEE . Collision-free
robot joint configurations, θs and θc, for both ps and pc are
computed using TRAC-IK [26]. Since impactful contact is
a core requirement for successful manipulation, we do not
check for collisions between the robot end-effector and the
object. A final filter is applied to see if θ̇c = J−1(θc)~vEE ,
i.e., the joint velocities at θc given the given operational
space velocity ~vEE , satisfies the joint velocity thresholds for
the robot, 〈θ̇min, θ̇max〉 (see Figure 2b). Given this process
for generating feasible actions that move the object from
its current position towards the target position, we build a
global path planner to generate an action path through object
configuration space from the object’s current pose to task
goal region.

3) Path Planning: In this section, we introduce a novel
motion planner named PokeRRT ; it generates a graph of
feasible robot actions in the object configuration space.
With the aforementioned avalid as a set of valid control
parameters, exploration properties of the rapidly-exploring
random tree (RRT) algorithm [27] are leveraged to generate
a planning graph. The integration of poking-specific con-
trol inputs to RRT ensures that all nodes in the planning
graph are achievable configurations, while the RRT algorithm
ensures exploration bias to the largest Voronoi regions of
the configuration space. This bias is especially central to
poking manipulation due to its inherent ability to cover large
distances in the operational space.

A new node qrand is randomly sampled in the object
configuration space with probability pbias, otherwise qrand
is set as the goal pose. Actions from avalid are applied from
the nearest graph node qnear towards qrand (see Figure 2c)
and the resultant node qnew that minimizes the distance to
qrand is added to the graph (see Figure 2d). Resultant poses
are added to the planning graph until the task goal region
is reached, at which point the shortest path is calculated—

the shortest path corresponds to one with the lowest overall
number of pokes from qstart to qgoal to leverage poking’s
capacity to cover large distances quickly. The current imple-
mentation operates in a closed-loop paradigm—we replan on
the fly if the resultant pose after a poking action is outside
a specified threshold to compensate for inaccuracies of the
simulation poking model. Using this planner, poking can be
used both as a skill and as a failure recovery tactic and can be
shown to operate faster and in a more diverse set of scenarios
than pushing or grasping. Since poking is inherently capable
of covering larger distances in short periods of time due to
high impact interactions, we can leverage this insight and
add extensions to PokeRRT to plan sparse paths in object
configuration space.

4) Online Path Smoothing: In order to minimize the
number of pokes and enable poke planning to cover large
distances, we combine empirically-derived heuristics with
insights from RRT* [28] to develop PokeRRT*. RRT* allows
for online path sparsification by introducing two additional
steps to RRT—choosing the best parent node and rewiring—
while preserving the probabilistic completeness guarantees
of RRT and adding asymptotic optimality as a key feature.
In RRT*, choosing the best parent node qbest replaces the
edge from qnear to qnew with the edge from qbest to qnew.
Therefore, planning time for PokeRRT* can be reduced by
using a data-driven heuristic to generate qnew—instead of
applying actions from avalid to get qnew, we sample ∆q
from a range of displacements from a dataset of random
pokes. qnew is then computed as qnear + ∆q in the direction
of qrand.

Then qbest is chosen as the neighbor within radius r
of qnew that minimizes the number of pokes from qstart
to qnew. Radius r is selected empirically as the average
displacement of the object in a pre-collected dataset of
random pokes. In order to make sure each edge in the
graph is a valid action, the best action from qbest to qnew
is recomputed by sampling actions from avalid. Resultant
pose q′new is chosen as one that minimizes the distance to
qnew. q′new and the edge from qbest to q′new are added to
the graph. In the rewiring step, the neighborhood of q′new
is rewired to minimize the number of pokes along the path
from qstart through q′new to a neighboring node. As depicted
in Figure 5, PokeRRT* leads to fewer pokes in the planned
path than PokeRRT, thereby taking advantage of poking’s
core competency of allowing larger displacements.

IV. EVALUATION

In this section, we qualitatively and quantitatively evaluate
PokeRRT and PokeRRT* in simulation and the real-world
under various environment setups. We measure success rates,
task times (in seconds), and number of executed actions in
the final planned path for both motion planners. Success rates
are averaged across all scenarios for a given planner, whereas
task times and number of executed actions are presented
separately for each scenario. Task time is defined as the
sum of planning, execution, and replanning times. Object
start pose is kept fixed across various trials to improve
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Fig. 3: The robot successfully pokes the object (blue) from its reachable workspace (orange) to the goal region (green) in
all scenarios while avoiding obstacles (red). PokeRRT, PokeRRT*, and baseline algorithms are evaluated in 6 scenarios—no
obstacles (S1), 2 obstacles (S2), 4 obstacles (S3), wide object (S4), tunnel (S5), and non-overlapping shared workspace
(S6). The robot is unable to i) push or pick-and-place in S6 due to limited robot reach, ii) push in S5 due to workspace
obstruction in the action path, and iii) pick-and-place in S4 due to object being wider than gripper width. See Table I for
more detail.

Scenario Description Poke Push Grasp
S1 No Obstacles X X X
S2 3 Obstacles X X X
S3 5 Obstacles X X X
S4 Wide Object X X
S5 Tunnel X X
S6 Shared Workspace X

TABLE I: We evaluate PokeRRT* in 6 different scenarios
and demonstrate its superiority to pushing and pick-and-place
in S4, S5, and S6. See Figure 3 for visualizations of these
test conditions.

reproducibility of results. Simulation results are averaged
over 250 trials and real-world results are averaged over 10
trials.We set up experiments using our motion planners to
test the following hypotheses:
• H1: PokeRRT expands the size of the manipula-

tor workspace and performs successfully where push-
planning and grasping fail.

• H2: PokeRRT allows for faster planar manipulation of
the target object than push-based planners.

Collectively, our results demonstrate that poking indeed
enables fast and successful manipulation of objects in con-
ditions where pushing and grasping fail.

A. Experimental Setup

1) Scenarios: We test multiple algorithms for poking,
pushing, and grasping manipulation in the six test scenarios
outlined in Table I and visualized in Figure 3. Our motivating
application is the concurrent operation of two robots located
in adjacent workcells on a factory floor. Reachable regions
for each robot may or may not overlap. Therefore, the
objects being manipulated must be accessible by both robots
to enable successful collaboration. Given this motivation,
each scenario in our experiment setup operates in a planar
workspace shared by two robots and represents behaviors
that are inherently different in nature. Scenarios are designed
to test the flexibility of the planner in generating plans
for manipulating the object from a fixed start pose to a
goal region, which represents the workspace of a second
robot. Scenarios 1-3 (S1-S3 in Figure 3) are designed to test
baseline manipulation capability through uncluttered (S1)
and cluttered (S2, S3) environments. S2 and S3 contain 2
and 4 obstacles, respectively, at fixed poses in the robot
workspace. The object being manipulated has size [9, 14, 5]
cm and mass m = 87 g. Poking, pushing, and grasping will

all work in these scenarios since the goal region overlaps
with the first robot’s reachable workspace. Scenario 4 (S4 in
Figure 3) contains a bigger cuboid object of size [11, 18, 11]
cm and mass m = 112 g in an obstacle-free workspace.
Poking and pushing will work in this scenario, however
pick-and-place will not since gripper width (10 cm) is
smaller than the minimum dimension of the cuboid. This
scenario represents situations where object properties are
incompatible with robot kinematics, i.e., if the object of
interest is too heavy or too wide to be grasped or if the end-
effector is malfunctional, and the robot needs to formulate
an alternate manipulation plan.

Scenario 5 (S5 in Figure 3) presents two work cells with
a tunnel in the center of the table. The first robot cannot
push the object to the second robot because the end-effector
will collide with the divider along its action path. However,
poking will succeed due to the short duration of robot–object
contact. The first robot is able to grasp the object over the
divider in our setup but for larger dividers such as a screen,
pick-and-place will fail. Scenario 6 (S6 in Figure 3) contains
an obstacle-free workspace with non-overlapping reachable
regions for each robot. The first robot is able to poke the
target object to the second robot’s reachable workspace, but
cannot push or pick-and-place due to limited reachability.
Since pushing operates under the quasitstatic assumption, it
requires constant contact between the robot end-effector and
the object being manipulated and therefore, manipulation is
limited by robot kinematics and reachability. This scenario
represents cases where task success is limited by the robot’s
kinematic characteristics, i.e., if the goal pose is outside the
robot’s reachable workspace.

2) Parameters: The action vector avalid = 〈pc,‖~vEE‖〉
for our proposed motion planners is generated at runtime.
Contour points pc close to object corners are ignored for
clean pokes. The velocity magnitudes ‖~vEE‖ are sampled
in the [0.3, 1.0] m/s range to increase likelihood of robot
joints achieving the commanded operational space velocities.
Goal region is defined as the workspace of the second robot,
determined as the frequency of inverse kinematics poses
achievable on discretized xy-locations on the planar support
surface of the object. The replanning threshold is set at 5cm
and 10◦ since a higher threshold will cause the end-effector
to miss contact with the object.



Task Time [seconds] Success Rate
Planner S1 S2 S3 S4 S5 S6 S1 - S6

PokeRRT* 46.43 (21.67) 212.74 (100.01) 232.42 (118.63) 70.47 (38.82) 132.62 (98.27) 130.01 (84.05) 0.87 (0.31)
PokeRRT 49.69 (21.11) 196.54 (124.61) 167.55 (138.63) 64.14 (52.45) 116.35 (89.72) 171.77 (103.21) 0.88 (0.31)

Low-Impulse
PokeRRT* 169.87 (71.28) 378.90 (122.21) 346.70 (111.71) 165.91 (44.87) N/A N/A 0.53 (0.28)

Low-Impulse
PokeRRT 123.71 (36.72) 328.66 (107.18) 322.28 (138.05) 135.80 (32.91) N/A N/A 0.63 (0.18)

Two-Level
Push Planner 122.68 (47.07) 284.78 (104.40) 249.32 (68.30) 117.58 (67.05) N/A N/A 0.44 (0.26)

Pick-and-Place 16.29 (3.76) 17.71 (3.81) 16.14 (3.25) N/A 19.15 (4.99) N/A 0.67 (0.00)

TABLE II: Task times for various planning algorithms in simulation are presented across multiple scenarios. Results are
presented as mean (stddev). Success rates are aggregated across all 6 scenarios. Overall, poking is faster than pushing
and leads to higher success rate than pushing or grasping. Low-impulse poke planners and Two-Level Push Planner are
unsuccessful in S5 and S6 due to action path collisions (S5) or goal region being outside the robot’s reachable workspace
(S6). The robot is unable to pick or place object in S4 and S6 due to limitations in robot mechanics.

3) Algorithms: PokeRRT and PokeRRT* are compared
against several baseline approaches. To evaluate pushing, we
use the Two-Level Push Planner presented in [11]. This work
integrates simulation-based forward modeling with sampling-
based motion planning to explore the space of feasible
pushing actions required to get an object from start to goal.
Our baseline approaches, Low-Impulse PokeRRT and Low-
Impulse PokeRRT*, are designed to show that poking is
a more fundamental manipulation skill and encompasses
pushing if the applied impulse magnitudes are kept small.
They operate similarly to PokeRRT and PokeRRT* but with
‖~vEE‖ = 0.2 m/s to simulate pushing. Lastly, Pick-and-Place
is performed in an open-loop manner with predefined grasps
for known objects. An experimental trial fails if the planner
does not find a valid plan to the goal region in 240 seconds
or if the object falls off the table during execution.

B. Simulation Experiments

Table II shows the task times and success rates
for Pick-and-Place and five non-prehensile manipulation
planners—PokeRRT*, Low-Impulse PokeRRT*, PokeRRT,
Low-Impulse PokeRRT, and Two-Level Push Planner. Re-
sults are averaged over 250 trials. Poking is successful in
all scenarios while pushing fails in S5 and S6 and grasping
fails in S4 and S6, supporting H1. Two-Level Push Planner
has a low overall success rate (44%) for two main reasons:
i) pushing must satisfy the quasistatic assumption by main-
taining constant contact between the robot end-effector and
the object—therefore, pushing does not work in S5 due to
collision with the workspace divider and does not work in S6
due to limited robot reachability, and ii) the pushing action,
inherently longer than the instantaneous poking, causes the
end-effector to collide with obstacles in narrow spaces in S2
and S3.

Poking task times are lower than pushing task times
across all scenarios. Standard deviations are high due to
the sampling-based nature of our planners. The task time
for S4 is greater than for S1 since the object used in S4
is not only bigger in size but also larger in mass than the
object used in S1, therefore poke displacements are lower
given the same contact force. Pick-and-Place has the lowest
task time because it does not involve planning in the object

Number of Actions in Execution Path
Planner S1 S2 S3 S4 S5 S6

PokeRRT* 3.93
(0.98)

4.62
(1.04)

4.49
(1.02)

4.76
(1.20)

3.71
(1.02)

3.65
(1.08)

PokeRRT 6.10
(1.96)

8.21
(2.95)

7.94
(2.08)

6.77
(2.35)

4.56
(1.27)

8.17
(2.46)

Low-Impulse
PokeRRT*

16.43
(2.28)

22.27
(2.26)

19.00
(1.54)

18.54
(1.44) N/A N/A

Low-Impulse
PokeRRT

19.08
(1.51)

19.62
(1.64)

20.74
(2.13)

19.38
(1.59) N/A N/A

Two-Level
Push Planner

8.72
(1.42)

8.61
(1.71)

7.68
(1.19)

8.53
(1.51) N/A N/A

Pick-and-Place 1.00
(0.00)

1.00
(0.00)

1.00
(0.00) N/A 1.00

(0.00) N/A

TABLE III: Number of executed actions in planned path for
various planning algorithms in simulation across multiple
scenarios. Both PokeRRT* and Low-Impulse PokeRRT*
lead to fewer actions than their respective RRT-based coun-
terparts due to the online path smoothing approach inherent
to RRT*.

configuration space—the robot moves to object pose, grasps,
and moves to goal pose, so only a single action is executed.
Low-impulse poke planners have large search trees due to
shorter displacements of the object. This results in longer
planning times and also lower success rates. Task times are
higher for obstacle scenarios because the robot end-effector
is more likely to run into obstacles and collision checking is
a computationally expensive procedure.

Pick-and-Place always succeeds in simulation for S1,
S2, S3, and S5 because there is no uncertainty in object
pose so manipulation boils down to moving to a predefined
grasp configuration and moving to the goal location. We
intentionally set up the start and goal configurations for Pick-
and-Place in order to create an upper bound for comparison
with our planners. As expected, it fails for S4 because the
object being manipulated is too wide for the gripper and it
fails for S6 because the goal pose for the object is out of
robot reach. Low-impulse poking has higher success rates
than pushing because the shorter robot trajectories result in
fewer obstacle collisions than poking. Low-impulse poking
fails in S5 and S6 because the pokes are not strong enough to
pass the workspace divider or cross into the second robot’s
reachable workspace.

Table III presents the number of executed actions in the
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Fig. 4: Two robots with non-overlapping reachable regions are shown (Scenario 6). Robot A (left) applies 2 pokes to
manipulate the object to Robot B’s (right) reachable workspace (a-d). Robot B then grasps the object and places it in a bin
that is not reachable by Robot A (e-f).

(a)

(b)

Fig. 5: Plans generated by PokeRRT (a) involve more pokes
than those generated by PokeRRT* (b), which indicates that
PokeRRT* is better able to exploit poking’s key character-
istic of covering large distances.

final planned path for multiple planning algorithms across
several scenarios. It indicates that the number of executed
actions is lower for poking compared to pushing, showing
that poking can displace the object further with fewer actions
in less time, hence supporting H2. Notably, the number of
actions is lowest for PokeRRT*, thereby supporting our claim
that minimizing the number of poking actions exploits the
large displacement property of poking manipulation (Fig-
ure 5). However, the task time is similar to that of PokeRRT
since PokeRRT* introduces the choose parent and rewiring
steps to PokeRRT, which increases the number of actions
sampled while planning. In general, PokeRRT is preferable
in scenarios with obstacles—even though the number of
pokes for PokeRRT* is lower (i.e., faster overall execution),
a greater percentage of time is spent on resampling actions in
PokeRRT*, most of which lead to object–obstacle collisions.
Task times for low-impulse poke planners are comparable to
pushing, supporting our claim that pushing is a limiting case
of poking where applied impulses are low in magnitude.

C. Real-World Experiments

We evaluate PokeRRT*, PokeRRT, Two-Level Push Plan-
ner, and Pick-and-Place for a subset of the scenarios listed
in Table I in the real-world. As in the simulation setup, a
Sawyer arm is positioned in front of a table of size [91, 183]
cm. We run 10 trials for each planner and each scenario
(Table IV). The task times and the number of actions exe-
cuted in the real world are slightly higher than in simulation.
This is expected because the plan is generated in simulation
and simulation does not fully capture the complexities of the
real-world environment. Therefore, the number of replans are
higher and thus the task times are higher. Real-world results
align with the results from simulation. In S4, poking is 1.7
times faster than pushing. In S5, pushing fails because of
collision with obstacles and grasping fails because the object
is too large for the gripper. Both pushing and grasping fail in
S6 because the goal region is unreachable. Figure 4 depicts
a failure recovery case for S6 where failure to grasp to the
second robot’s reachable workspace does not result in task
failure—the first robot pokes the object to the second robot’s
reachable workspace, therefore, allowing the second robot
to successfully manipulate the object. Additionally, while
grasping in the real-world, like in simulation, is a faster form
of manipulation with fewer actions than poking or pushing,
it has a lower overall success rate (27%) than pushing (33%)
due to perception inaccuracies. Similar to simulation results,
PokeRRT* has the fewest number of executed actions.

V. CONCLUSION AND DISCUSSION

In this work, we demonstrate poking manipulation as
a fundamental motion primitive that complements grasp-
ing and encompasses pushing in terms of capability. We
show qualitative and quantitative results for multiple test
conditions to demonstrate the flexibility and robustness of



Task Time [seconds] Number of Actions Success Rate
Planner S4 S5 S6 S4 S5 S6 S4 - S6

PokeRRT* 69.58 (26.15) 127.45 (57.80) 182.03 (122.77) 5.27 (2.00) 5.12 (1.05) 6.11 (1.91) 0.9 (0.3)
PokeRRT 83.55 (29.59) 148.55 (86.23) 157.03 (94.41) 6.20 (1.60) 6.67 (1.56) 6.88 (2.15) 0.9 (0.3)

Two-Level Push Planner 120.21 (47.09) N/A N/A 6.00 (1.26) N/A N/A 0.33 (0.47)
Pick-and-Place N/A 20.31 (3.21) N/A N/A 1.00 (0.00) N/A 0.27 (0.44)

TABLE IV: Real-world task times, number of actions in executed path, and success rates are presented in this table. Results
are averaged across 10 trials. Pushing has the highest success rate and fastest task times. PokeRRT* generates plans with
the fewest number of actions.

PokeRRT. We present the task times, number of executed
actions, and success rates of our proposed motion planners
and four baseline algorithms across six different scenarios.
The results demonstrate the strengths of the poking motion
primitive: poking is not limited by robot reachability, robot
end-effector design, object properties, and inaccuracies due
to perception. Success rates are higher for poking-based
planners than for the push planner indicating that poking
expands the size of reachable workspace by its ability to
execute longer object displacements using shorter robot end-
effector trajectories. Task times for computed plans are
significantly lower for poking than for pushing, indicating
that poking allows fast object manipulation because it does
not face the same constant-contact restriction as pushing.
PokeRRT and PokeRRT* also demonstrated the qualitative
behaviors outlined in Table I.

Exploring additional applications of instantaneous contact
and extending this idea to other non-prehensile manipulation
skills are interesting avenues for future work. Moreover,
by utilizing multiple skills (e.g. grasping and poking) and
planning around the key strengths of each motion primitive,
robots will be able to more efficiently manipulate objects.
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