
Fast Online Segmentation of Activities from Partial Trajectories

Tariq Iqbal1, Shen Li1, Christopher Fourie1, Bradley Hayes2, and Julie A. Shah1

Abstract— Augmenting a robot with the capacity to under-
stand the activities of the people it collaborates with in order
to then label and segment those activities allows the robot to
generate an efficient and safe plan for performing its own ac-
tions. In this work, we introduce an online activity segmentation
algorithm that can detect activity segments by processing a
partial trajectory. We model the transitions through activities
as a hidden Markov model, which runs online by implementing
an efficient particle-filtering approach to infer the maximum
a posteriori estimate of the activity sequence. This process is
complemented by an online search process to refine activity
segments using task model information about the partial
order of activities. We evaluated our algorithm by comparing
its performance to two state-of-the-art activity segmentation
algorithms on three human activity datasets. The proposed
algorithm improved activity segmentation accuracy across all
three datasets compared with the other two approaches, with
a range from 11.3% to 65.5%, and could accurately recognize
an activity through observation alone for 31.6% of the initial
trajectory of that activity, on average. We also implemented the
algorithm onto an industrial mobile robot during an automotive
assembly task in which the robot tracked a human worker’s
progress and provided the worker with the correct materials
at the appropriate time.

I. INTRODUCTION

Robots currently have the capacity to help people in
several fields, including health care, assisted living, and
manufacturing and factory settings. In many of these scenarios,
robots must share physical space and actively collaborate with
humans [1–3]. The performance of many of these human-
robot teams depends upon how fluently all team members can
jointly perform their tasks [4, 5]. In order to successfully act
within a group, people must be able to predict the intentions
of other group members and use that knowledge to determine
when, where, and how to act for the team’s benefit [6]. In
human-robot interaction scenarios, a robot similarly requires
the ability to precisely identify and monitor other members’
actions so that it can predict future actions and adapt its own
plans accordingly [7, 8]. In particular, a robot requires the
ability to segment others’ activities online by detecting the
start time of each activity and distinguishing it from the end
time of the previous activity. This capacity is particularly
crucial to efficient and safe human-robot interactions within
factory environments, where humans and robots often work
in close physical proximity to one another [9].

1The authors are with the Computer Science and Artificial Intelligence
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA. {tiqbal,shenli,ckfourie}@mit.edu,
julie a shah@csail.mit.edu

2The author is with the Department of Computer Science,
University of Colorado Boulder, Boulder, CO 80309, USA.
bradley.hayes@colorado.edu

Fig. 1: Four associates perform four activities from the Auto-DA dataset: A)
moving to the dashboard, B) collecting the speedometer unit, C) collecting
the navigation unit, and D) placing the navigation unit onto the dashboard.

Researchers across many fields have attempted to ad-
dress this concern, which is defined as the online activity
segmentation problem. Prior techniques [10–13] are well-
suited for data segmentation via post-processing but are
not applicable to human-robot interaction scenarios, because
either the algorithms become computationally expensive to
run online, or they cannot function adequately with only a
partial observance of data.

In this paper, we introduce FOSAPT (Fast Online Seg-
mentation of Activities from Partial Trajectories), an online
activity-segmentation algorithm able to identify and label
activity segments by processing just a part of the full activity
trajectory. We model the transitions through the activity
classes as a hidden Markov model in a manner similar to
Fearnhead and Liu’s approach [14]. FOSAPT runs efficiently
in an online setting by inferring the maximum a posteriori
estimate of the sequence of activity classes, using particle
filtering to make the inference tractable. However, FOSAPT’s
particle-filter approach is complemented by an online search
process to refine activity segments via task model information
about the partial order of activities, along with predictive
models of the timings of future activities. Our algorithm is
both computationally inexpensive and suitable for real-time
implementation onto robots.

We evaluated FOSAPT by assessing its performance on
three human activity datasets (UTKinect [15], Static-Reach
[16], and Auto-DA) compared with two state-of-the-art
activity segmentation algorithms from prior literature: the
online change point detection algorithm [14] and the transition
state clustering algorithm [10]. One of the datasets, Auto-DA,
is derived from a real-world manufacturing task involved
in automotive final assembly, in which 12 manufacturing
associates performed variations of the task (see Fig. 1).

In our empirical evaluation, FOSAPT accurately segmented
72.2% of the activity segments, on average, across all four
variants of the task orders in the Auto-DA dataset. We also
observed that FOSAPT could accurately recognize and label
an activity by observing only 31.6% of that activity’s initial
trajectory, on average. FOSAPT achieved an improvement
to accuracy ranging from 11.3% to 65.5% compared with
the other two approaches across all three datasets. Finally,
we applied our algorithm to a demonstration in which a
collaborative robot tracked a human worker’s progress during
a dashboard assembly task and provided the worker with the
correct materials for assembly at the appropriate time.

II. RELATED WORK

Researchers across many fields have attempted to address
the problem of activity segmentation, with two primary
approaches having been explored thus far: supervised and
unsupervised learning of segmentation models. In a supervised
segmentation approach, machine learning algorithms are
trained with segmented and labeled activities prior to testing;
in unsupervised methods, the algorithms do not require that
the training trajectories be segmented and labeled.

Many supervised approaches involve two primary steps for
activity segmentation: extracting spatiotemporal features from
the data source, then training temporal models to identify
segments. However, many temporal classifier models do not
scale well for identifying long-range temporal patterns. To
address this challenge, Lea et al. [17] developed temporal
convolutional networks (TCNs), a class of time-series model,
that uses a hierarchy of temporal convolutions to perform
fine-grained action segmentation. They presented two types
of TCNs, and using a combination of both, their method was
able to segment video recordings of activities via temporal
relations among the visual features. Similarly, Kuehne et
al. [18] developed a generative approach to human activity
segmentation, which used reduced Fisher vectors as features
and combined these features with an HMM to segment
activities temporally into action units. These methods work
well when full trajectory information is available during the
segmentation process; however, they are not suitable for
online segmentation scenarios in which segmentation must be
performed on partial data, which is the focus of our interest.

On the other hand, many unsupervised segmentation
approaches have been proposed in the literature in which
algorithms attempt to discover underlying structures within
the data to cluster similar trajectories together. For example,
Zhou et al. [19] developed hierarchical aligned cluster analysis
(HACA), a hierarchical clustering algorithm designed to
perform temporal segmentation of human motion. Their
approach identifies a number of disjoint segments within
multidimensional time series data and assigns similar seg-
ments into a cluster. Krishnan et al. [10] introduced the
transition state clustering (TSC) method, an unsupervised
segmentation approach that clusters transition states together
from a set of demonstrations. TSC assumes that the low-level
dynamics of a segment are noisy, but that high-level dynamics
follow a consistent, spatially and temporally correlated partial

order of events across demonstrations. The models used in
many unsupervised approaches assume particular structures
within the prior probabilities and trajectory data, and an
unsupervised method designed for one dataset often fails
to perform satisfactorily on another dataset with a different
underlying data structure.

Another prominent segmentation approach involves sta-
tistical model-based changepoint detection algorithms. For
example, Fox et al. [12] developed the Beta Process Autore-
gressive HMM (BP-AR-HMM), a Bayesian, non-parametric
approach to jointly modeling multiple related trajectory
time-series. Neikum et al. [20] utilized BP-AR-HMM to
partition demonstrations into segments within their developed
learning from demonstration framework and deployed it
onto a PR2 robotic platform. In the same vein, Fearnhead
and Liu [14, 21] developed a statistical approach to online
changepoint detection problems by introducing a sampling
method similar to particle filters to reduce computational
cost. They assumed that if an observation sequence and
a set of candidate models are given, then the observation
sequence is generated from specific underlying models, and
the points at which the underlying models change are detected
as changepoints. Konidaris et al. [22] built upon this idea and
implemented a model-based changepoint detection process
for constructing skill trees to acquire skills from human
demonstrations. However, these techniques were designed for
offline processing of full trajectory data.

Although these methods work for activity segmentation
in various scenarios, they either become computationally
expensive to run online or do not perform adequately with
only partial observance of data. In order to address these
problems, we incorporate a supervised learning model with
a statistical changepoint detection algorithm and a particle
filtering-based sampling approach to performing online human
activity segmentation onto a robot. This algorithm is able to
function with only partial observance of trajectory data, as
we describe in detail in Section III.

III. METHODOLOGY

In this section, we introduce the FOSAPT (Fast Online Seg-
mentation of Activities from Partial Trajectories) algorithm.
This segmentation algorithm takes a partial trajectory as input
and can recognize and track activity segments as it progresses
in real time. FOSAPT is also capable of further refining the
start and the end times of an activity accurately as that activity
ends. This approach is both computationally inexpensive and
suitable for real-time implementation onto robots.

We present the algorithm in Algo 1 and formulate the
problem of online activity segmentation in Section III-A. We
also provide an overview of the algorithm in Section III-B
and discuss it in greater detail in Sections III-C-III-K.

A. Problem Formulation

Activity segmentation involves identifying the start and
end times of each activity segment within a trajectory and
assigning the appropriate corresponding activity label to each
segment. Given a set of trajectory spanning time t = 1 to

T with corresponding trajectory frames F = (f1, f2, . . . , fT)
and a set of activity labels A = (a1, a2, . . . , am), the activity
segmentation problem is defined as follows: identifying the
mapping of trajectory frames to activity labels. Activity
classification represents a special case of activity segmentation
wherein the activity’s start and end times are given and the
activity label must be assigned. In this work, we are interested
in online activity segmentation with only partial observance
of trajectory data.

We define the times at which an activity label changes in
the trajectory frames as denoted by changepoints, τ . Consider
that the trajectory data consists of n activities; we can then
denote (0 < τ1 < τ2 < . . . < τn−1 < T) and τ0 = 0 and
τn = T as the changepoints in trajectory frames.

The trajectory frames between two changepoints are
denoted as a segment, s. We define a segment of frames
as s(i, j) = (fi, . . . , fj), where ∀f ∈ F and i = τp
and j = τp+1. Thus, given a set of activities A, activity
segmentation produces a set S that contains an allocation of
non-overlapping frame intervals in F with labels drawn from
A. Thus, s(i, j, a) ∀s ∈ S, i, j ∈ T such that i < j, a ∈ A.

Online partial trajectory activity segmentation assumes
a partial set of trajectories s(i, k) = (fi, . . . , fk) as input,
where i = τp, k ≤ j = τp+1. The output is s(i, k, a) such that
s(i, k, a) ⊆ s(i, j, a), (i, k, j) ∈ T , (i < k ≤ j), and a ∈ A.

B. Approach in a Nutshell

FOSAPT relies upon a small portion of data as it arrives
and checks the likelihood of the label of that segment via a set
of trained activity classifiers. It then incrementally computes
the likelihood value of a larger segment from smaller segment
likelihoods (instead of calculating the likelihood of the larger
segment again). In FOSAPT, transitions through the activity
classes are modeled as a hidden Markov model. It runs
efficiently in an online setting by inferring the maximum
a posteriori estimate of the sequence of activity classes via
a particle-filtering approach. This method is complemented
by an online search process to refine activity segments using
task model information about the partial order of activities, as
well as predictive models of the timings of future activities.

C. Activity Likelihood Calculation from Partial Trajectories

This section details Algo 1, Line 3-5. FOSAPT utilizes
an activity classification algorithm to measure the activity
likelihood of a set of trajectory frames, described as the
likelihood function (Line 5). In this implementation, we utilize
RAPTOR [23], a real-time, state-of-the-art activity classifier;
however, FOSAPT is not dependent upon any one particular
activity classification algorithm.

There are multiple advantages to using RAPTOR in FOS-
APT. First, RAPTOR is capable of training an ensemble of
sub-classifiers for each activity class. Thus, given a set of
trajectory frames, RAPTOR can provide a classification likeli-
hood for each activity. Second, it is fast and computationally
inexpensive, and thus implementable into real-time systems.

We first train a set of activity classifiers C =
(ca1 , ca2 , . . . , cam) for each ai ∈ A, where m = |A|, on

Algorithm 1 FOSAPT

Input: Partial trajectory < ∆F, j, t >, Activity set < A >, Activity classifiers
< C >, Number of sub-classes < B >, Bin lengths < β >, Particles < P >,
Previously detected segments < S >, Future activity list < FAL >

Output: Activity segments < S >, Particles < P >, Bin lengths < β >

1: pList← φ . temporary particle list
2: for a ∈ FAL do
3: if (|∆F | ≥ β(a)) then
4: for b← 1 : B do
5: l ← likelihood (Cb

a, ∆F) . classifier fitness
6: pr ← prior (a, FAL) . task structure
7: pmp ← prev MAP (P , j, t, A) . find MAP particle ends at j
8: Pt(j, a) ← (1−Ga(t− j − 1)) * l * pr * pmp.MAP
9: MAP ← Pt(j, a) * ga(t− j) / (1−Ga(t− j − 1))

10: np ← Particle (a, b, j, t, l, Pt(j, a), MAP , pmp)
11: pList = pList+ np

12: for p ∈ pList do
13: P ← merge or insert (p, P) . merge with other particles, or insert in P
14: P ← resample (P) . resample particles
15: S ← find all segments (P , S) . find all activity segments
16: β ← dynamic bin length adjustments (β, S) . adjust bin lengths from evidence
17: refine activity segments (S) . this step runs in parallel
18: return S, P , β

a corpus of recorded trajectory frames, such that activity
classifier cai is trained for activity ai. During the training
phase, we train RAPTOR with an ensemble of sub-classifiers
using a part of the full trajectory frames, and combine those
temporally to generate a full activity classifier, similar to the
idea proposed by Hayes and Shah [23]. We divide activity
ai into B sub-classes. We then train (c1ai , c

2
ai , . . . , c

B
ai) sub-

classifiers separately and combine them temporally to generate
classifier cai for activity ai. A training process such as this
permits the algorithm to utilize sub-classifiers directly (e.g.,
check the likelihood of trajectory frames (fi, . . . , fk) with
cbai , where 1 ≤ b ≤ B for activity ai.

From the training data, FOSAPT models the marginal
probability of each activity length with a probability mass
function g(.). Thus, we can define P (τk − τ(k−1) = d) =
gai(d), where g(.) is a discrete distribution on the length
of activity ai. The corresponding cumulative distribution
function is Gai(l) =

∑d
i=1 gai(i) [14]. Each activity classifier

is a temporal ensemble of B sub-classifiers, and FOSAPT
models the bin lengths as β from the training data, where
β(a) denotes the bin length of activity a. We explain how to
dynamically adjust this value in Section III-J.

During the testing phase, FOSAPT utilizes these sub-
classifiers to measure the likelihood of a partial set of
trajectory frames being an activity. If ∆F denotes a partial set
of trajectory frames from (fj+1, . . . , ft), then the algorithm
first checks whether the length of the trajectory frames (|∆F |)
is greater than or equal to the length of the bin size of
that activity, before performing the likelihood computation
(Line 3). FOSAPT then tests the likelihood of ∆F being
an activity a with each sub-classifier Cba, where 1 ≤ b ≤ B
(Lines 4 and 5).

D. Task Structure Modeling

For a set of trajectory frames (∆F), were the algorithm
to check all possible combinations of activity classes (∀ca
for a ∈ A), the process would be computationally expensive.
To reduce the cost of this computation, FOSAPT leverages
prior knowledge of the task’s sequence of activities to reduce
the number of classifiers on which the trajectory frames are

tested. Thus, a classifier is only used to evaluate a trajectory
when a task is supposed to occur at that moment or at a time
in the near future. As a result, this technique significantly
reduces the number of classifiers required for testing.

The algorithm constructs a hierarchical task network similar
to the clique/chain hierarchical task network (CC-HTN)
proposed by Hayes et al. [24]. FOSAPT builds this network
using the high-level task sequences of activities from the
training demonstrations, and generates a future activity list
(FAL) incorporating the possible activities that could happen
at a given moment of time from this task network, including
the current activity. Thus, FOSAPT only tests the trajectory
frames for activities that are present in the FAL (Line 2),
reducing the number of expensive likelihood computations.

E. Activity Prior Computation

The algorithm computes a prior probability (pr(a)) for an
activity (a), described as prior(a, FAL) (Line 6), utilizing
the FAL. This value represents the probability of an activity
occurring at that time. One can learn any prior probability
distribution of an activity from the training data. In our case,
the algorithm assumes that all the activities in the FAL are
equally likely; thus, FOSAPT generates a uniform distribution
over the number of activities in this list.

F. Activity Transition Modeling

Now, taking inspiration from the statistical changepoint
detection method developed by Fearnhead and Liu [14, 21], as
well as the follow-on work by Konidaris et al. [22], FOSAPT
can utilize these values to model the activity transitions as a
hidden Markov process. Here, the observed state at time t is
the trajectory frame, {ft}, and the hidden state is the activity,
at. The probability of a set of trajectory frames that starts at
time (j+1) and ends at t (∆F = fj+1, . . . , ft) being activity
at can be modeled as the product of the likelihood of ∆F
being activity at (l, measured in Line 5) and the probability
of the segment lasting for (t− j − 1) time steps. Thus, this
probability can be defined as P (∆F |at) = l∗(1−Gat(t−j−
1)). Similarly, the transition probability of the activities can
be defined as T (aj , at) = gat(t− j − 1) ∗ pr(at), where the
transition from activity aj at time j to activity at occurs at
time t, and pr(at) represents the prior probability of activity
at (Line 6) [14, 22].

FOSAPT can now compute the maximum likelihood
sequence for the activities (hidden states) given their transition
probability and the trajectory frames (observation). This
enables the algorithm to use an online Viterbi algorithm
to calculate the MAP estimate of the activity changepoint
positions and the orders. Thus, we compute the probability
of an activity a starting at time (j + 1) and continuing at
time t (Pt(j, a)) as follows:

Pt(j, a) = (1−Ga(t− j − 1)) ∗ l ∗ pr(a) ∗ PMAP
j (1)

PMAP
j = max

k,a

Pj(k, a)ga(j − k)

(1−Ga(j − k − 1)
(2)

We can calculate this probability for each k = 0, . . . , t− 1
and for all a ∈ A in Eq. 1. The values of k and a that

Fig. 2: A depiction of the particle generation and merging process. Left)
Particles are generated by computing the sub-classifier likelihoods from
∆F1 frames. Center) New particles are generated from ∆F2 frames (green)
and merged with the previously generated particles (orange). Right) Merged,
new, and old particles are in the particle list (new particles from ∆F2 in
green, merged particles in blue, and old particles from ∆F1 in orange).

maximize the PMAP
j value in Eq. 2 represent the activity

changepoint and the activity for the current segment at
time j. Thus, we can reduce total computation time while
calculating the value of PMAP

t repeatedly for each time step
t, changepoints j < t and for each activity a ∈ A by storing
each value for the next computation.

A particle filter is employed to efficiently keep the
computation tractable [14], where each particle represents a
segment with activity a that starts at time (j+ 1) and ends at
time t. Each particle stores the activity (a), the start and the
end bin numbers (b), the start time and the end of that activity
segment (j and t), the activity likelihood value (l), Pt(j, a),
the MAP value, and the maximum likelihood sequence.

FOSAPT first computes the MAP particle that ends at time
j according to Eq. 2 from previously generated particles
(Line 7). The algorithm then computes Pt(j, a) and the
MAP value according to Eq. 1 and Eq.2 (Lines 8-9). It
then generates a new particle and stores it in a temporary
particle list (Lines 10-11).

It is computationally expensive to compute Pt(j, a) for each
time step in real time. In the following section, we describe
an online algorithm that computes Pt(j, a) incrementally to
make it implementable onto a robot.

G. Incremental Pt(j, a) Computation Through Merging

Consider a situation in which ai is currently executing.
The algorithm waits until it receives a number of trajectory
frames equal to the bin size of that activity (β(ai)). Next,
the algorithm receives a small segment of trajectory frames,
∆F1 ∼ (fi1 , . . . , fj1), which is the size of the bin size of
activity ai. Given segment ∆F1, the algorithm does not have
any information regarding how far the activity has already
progressed, which would enable it to check a specific sub-
classifier. Thus, it checks the likelihood of the segment ∆F1

by testing against all the sub-classifiers (cbai) of that activity
where b = 1, . . . , B (Line 4).

After measuring the likelihood values for all sub-classifiers,
the algorithm generates B particles. Suppose these particles
are called (c1ai(∆F1), c2ai(∆F1), . . . , cBai(∆F1)); the algo-
rithm stores all particles in a particle list, P (Line 13, insert
operation).

After generating the particles, the algorithm again waits
for another segment of trajectory frames – for exam-
ple, ∆F2 ∼ (fi2 , . . . , fj2). Following a similar pro-

cess, the algorithm then generates another B particles,
with each particle storing the likelihood of segment ∆F2

tested against all sub-classifiers; these particles are called
(c1ai(∆F2), c2ai(∆F2), . . . , cBai(∆F2)).

Next, the algorithm performs a merge operation. The
idea behind this merge is that the algorithm computes
the likelihood of a larger segment from already-computed
likelihoods of smaller segments. This operation is computa-
tionally inexpensive, but enables the algorithm to efficiently
compute the likelihood of larger segments while concurrently
maintaining multiple possible hypotheses.

Particles must be temporally adjacent in order for the
algorithm to merge them. Two particles are considered
temporally adjacent when they contain the likelihood values
computed from two adjacent sub-classifiers of the same
activity. For example, the algorithm would merge particles
(c1ai(∆F1) and c2ai(∆F2)), as the likelihood value of particle
(c1ai(∆F1) is computed from sub-classifier 1 (c1ai) and the
likelihood value of particle (c2ai(∆F1) is computed from sub-
classifier 2 (c2ai). As such, during this process, the algorithm
merges c2ai(∆F2) with c1ai(∆F1), and the c1ai(∆F1) particle
becomes c(1−2)

ai (∆F(1−2)), while c2ai(∆F2)) does not change.
To compute the Pt(j, a) of this merged particle

(c(1−2)
ai (∆F(1−2))), FOSAPT utilizes the computed likelihood

values of the c1ai(∆F1 and c2ai(∆F2) particles. As the
trajectory segments are temporally adjacent but independent,
the activity likelihood values of the merged trajectory segment
(∆F1+∆F2) are computed by taking a product of the activity
likelihood of both segments and then normalizing it over the
number of segments (Line 5). Similar to RAPTOR, FOSAPT
performs a max-polling operation on the likelihood values
before performing this computation. The algorithm updates
the values of other statistics by following the steps presented
in Lines 6-9 for the merged segment. (We present this merging
step in Fig. 2.) After merging the eligible particles, the
algorithm updates the particle list, P .

H. Resampling

To keep the computation tractable, when the number of
particles (|P |) reaches a predefined threshold (RN), FOSAPT
uses a resampling algorithm to filter the particle number to
a fixed value (RM) (Line 14). It applies the following three
criteria to reduce the number of particles after the merge step.

First, the algorithm removes the particles with a starting sub-
classifier number higher than a threshold, as these particles
represent the final portion of an activity and are not likely
to produce a larger segment to represent a major part of the
activity in the future. Second, the algorithm removes any
segments that are not updated for a set time period. In our
implementation, FOSAPT measured the longest time each
activity takes from the training data, summed this value with
the square root of the standard deviation value of that activity
time from the training trajectory, and set the result as the
maximum allowable time for a particle of that activity to be
alive. Finally, after applying both of the previous filtering
methods, if the total number of particles is higher than

RM , FOSAPT prunes m% of the particles with the lowest
likelihood.

I. Compute Activity Segments

After completing the particle generation process, the
algorithm’s goal is to identify the activity sequence from
the observed trajectory up to that time step. To do so,
FOSAPT first finds the particle within the particle list (P)
with the highest Pt(j, a) value at time t. We impose additional
constraints that a particle must be longer than a predefined
number of bin lengths (β) and the likelihood value of that
particle must be greater than a likelihood threshold value
(φ) before it can be selected as a candidate for an activity.
After finding the particle with the highest Pt(j, a) value
at a given time point, the algorithm adds this particle to
a max particle path, which continues to grow as each new
max MAP particle is found. All the activity segments are
computed by backtracking the max particle path (Line 15).

J. Activity Time Prediction and Dynamic β Adjustment

FOSAPT updates its predictions about activity timing to
improve segmentation performance. If a test activity trajectory
is longer or shorter than the training trajectories, the bin
length (β) of that activity must be adjusted accordingly to
compute accurate likelihood values from the sub-classifiers.
To address this challenge, we designed an algorithm that
generates predictions about the timing of future activities
based on observed timings of previous activities and adjusts
the bin length (β) according to these prediction values.

A Gaussian Mixture Model (GMM) is used to model
temporal predictions of an activity time. The GMM can be
formally defined as a normalized weighted sum of Gaussian
modes, as follows:

p(x|λ) =

M∑
i=1

wi · g(x|µi,Σi), s.t.
M∑
i=1

wi ≡ 1 (3)

g(x|µi,Σi) is an n-dimensional Gaussian, defined as follows:

g(x| · · ·) =
1

(2π)
D
2 |Σi|

1
2

exp

{
−1

2
(x− µi)TΣ−1

i (x− µi)
}

To facilitate prediction based on learned data, we use
the conditional decomposition of the model. This allows
the algorithm to incorporate accumulated evidence as it is
obtained from the activity segmentation. The conditional of
the GMM can be calculated as follows:

p(xs|xd) =
∑
k

wk
pk(xd)

p(xd)
· pk(xs|xd) (4)

xs represents the variables over which inference is to be
performed, and xd represents the variables for which evidence
exists. This equation illustrates that the conditional of a sum is
the weighted sum of the individual conditionals of the mode,
with the weight defined by a ratio of the marginals. (Note
that this outcome is independent of the modal distribution,
and while Gaussian functions are employed here, additional
or different distributions could be used instead.)

As more information is obtained over the course of the test-
ing phase, the model can be updated to form a new distribution

with different means and variances. The conventional method
for forming a prediction would be to use the maximum of
the conditional distribution. However, to hasten inference,
our approach incorporates the mean of the highest weighted
mode in lieu of the true maximum, which is then interpreted
as the prediction. This assumption may result in the incorrect
maximum being selected if modes closely overlap.

After computing the timing of the current activity and
predicting the timing of future activities, our algorithm adjusts
the bin length (β) of each activity, while the number of sub-
classifiers (B) remains the same. This process (Line 16)
makes the algorithm robust to any deviations from the trained
models with regard to activity timing.

K. Refine Activity Segments

As activity segmentation progresses, FOSAPT performs
another concurrent search within previously detected activity
segments to refine its assessment of the likely start and end
time points. This search reduces the chance of erroneous
detection near the activity transition points, and helps to
determine the accurate transition points to nearby activities.

Suppose that FOSAPT had previously detected segment
s1 for activity a1. To search for an accurate bound, the
algorithm would move the beginning and ending of segment
s1 forward and backward by a portion of the frames of that
segment length to identify the part with the highest likelihood
value. When the algorithm identifies the part with the highest
likelihood value within that segment, it reports that as the
accurate segmentation of that activity.

As this segmentation search is only employed on completed
activity segments, it does not interfere with the current
activity segmentation approach; this step runs in parallel
with the current activity segmentation steps and provides
more-accurate segmentation results. To reduce computation,
this step is only executed on an activity segment when that
segment does not change in the activity segment list, S, for
a predefined amount of time. Were the activity sequence
to change in the future, the refinement process would be
executed again on S (Line 17).

The overall time complexity of FOSAPT is O(|FAL| ∗
B ∗ |∆F |+ |P |).

IV. EXPERIMENTAL VALIDATION

We evaluated FOSAPT’s performance using three activity
datasets: a motion-capture dataset of the automotive dashboard
assembly process of real industry associates, a publicly
available single-person activity dataset collected using a
Microsoft Kinect sensor (UTKinect [15]), and reaching
behavior during a stationary manufacturing task recorded
with a motion-capture system (Static-Reach [16]).

We also evaluated FOSAPT’s performance by comparing
it against two activity segmentation methods from prior
literature: the Change Point Detection algorithm developed
by Fearnhead and Liu [14], which uses a similar statistical
approach to FOSAPT for tracking activities; and the Tran-
sition State Clustering (TSC) algorithm by Krishnan et al.
[10], a state-of-the-art activity-clustering algorithm. Although

TSC is unsupervised, it is reasonable to compare FOSAPT’s
performance with this method, as results from prior work
indicate that TSC demonstrated state-of-the-art accuracy when
detecting activity segments both in simulation and using data
from robot demonstrations [10].

In collaboration with an industry partner, we designed a
test scenario for the assembly of a car dashboard; we call
this scenario the “automotive dashboard assembly” dataset,
or “Auto-DA.” This dataset included the following activity
classes: move to the dashboard (mv dash), move to receive
a speedometer object (mv meter), collect the speedome-
ter (col meter), place the speedometer on the dashboard
(pl meter), move to receive a navigation unit (mv nav), collect
the navigation unit (col nav), place the navigation unit to the
dashboard (pl nav), and exit from the space (exit).

To collect data, we set up a testbed data collection facility
within our industry partner’s automotive assembly test factory.
A total of 12 associates factory participated in the data
collection process, including ten males and two females. Each
task sequence was 54.4 seconds long, on average.

Each associate participated in a total of four variations of
the assembly task. An associate performed all eight activities
sequentially during each of the task orders. The positions and
orientations of a total of seven objects (left hand, right hand,
head, dashboard, speedometer, navigation unit, and a scanner
gun) were tracked using a VICON motion capture system,
with the data recorded at a frame rate of 30Hz.

The UTKinect dataset consists of a total of 10 activity
classes performed by 10 people [15]. We combined similar
activities into the following five activity classes performed in
sequence: walk, sit (involving sitting down and standing up),
pick up and transport object, shake object (involving throwing,
pushing, pulling), and gesture with hands (involving waving
and clapping of hands). The dataset contains 20 skeleton joint
positions of a person tracked with a Kinect sensor. As the
activities were not continuous (in that undefined activities took
place between labeled activities), we removed the undefined
activities from each trial, merged all the activities sequentially
for evaluation purposes, and sampled at 15Hz. One trial was
not included in the data, as it did not contain all the activities
on the list.

The Static-Reach dataset was recorded via a PhaseSpace
motion capture system during a collaborative task performed
by a human-robot team [16]. Each trial consists of 16 sequen-
tial human activities, during which the participant would reach
toward and retract from eight different locations on a table.
Similar to the UTKinect dataset, we merged the sequential
activities for evaluation purposes and sampled at 120Hz.

V. RESULTS

A. Evaluation metrics

We first measured the intersection-over-union (IoU) scores
of the algorithm, following a process similar to that used
in prior work ([11] and [10]). For example, if the algorithm
segments an activity from a trajectory as s (representing the
time duration from a starting time point to an ending point)

TABLE I: Activity segmentation accuracy of the FOSAPT algorithm applied
to the Auto-DA dataset for all task orders

Segmentation accuracy (%)
Task order 1 68.8
Task order 2 65.6
Task order 3 80.2
Task order 4 74.1

Average 72.2

and the ground-truth activity segment is GT, then the IoU is
measured as IoU = (s ∩GT)/(s ∪GT).

For our Auto-DA dataset, we had two people label each
activity segment; thus, the ground-truth segments often varied
slightly between raters. During the GT calculation process,
we took the average of each time point (the start and end
times of a ground-truth segment) labeled by the annotators
as the ground-truth value.

We then computed segment accuracies by following an
approach similar to those taken by Wu et al. [11] and Krishnan
et al. [10]. We considered a segment to be detected accurately
if the IoU value of that segment was higher than a threshold
(δ). As we used real-world datasets, in keeping with Wu et
al. [11], we set δ = 0.4.

To evaluate the accuracy of FOSAPT and the CPD
algorithm, we performed leave-one-out cross-validation across
the trials for each dataset. As TSC is an unsupervised
segmentation algorithm, we provided all trajectories of each
dataset as input, and report the mean accuracy of five runs.

B. Accuracy of FOSAPT

We measured FOSAPT’s activity-segmentation accuracy
across all four task orders within the Auto-DA dataset, and
present the results in Table I. We also depict the rate at which
each activity was accurately segmented in Table II, Col 2. For
Auto-DA dataset, we utilized a sequential task structure and
set |FAL| = 3, B = 15, RN = 120, RM = 100, φ = −5.0.

The results in Table I indicate that FOSAPT detected
segments with an accuracy of 72.2% for the Auto-DA dataset,
with variation from 65.6% to 80.2% depending upon the task
orders. The results in Table II, Col 2 show that FOSAPT’s
activity segmentation accuracy varied from 50.0% to 90.0%
depending upon task type.

We implemented a version of the changepoint detection
algorithm developed by Fearnhead and Liu [14] for online
use. To determine the likelihood value of a segment, we used
RAPTOR, which helped us to make a fair comparison between
CPDs and FOSAPTs performances. Because CPD does not
include a method for incrementally computing likelihood
values from an activity classifier, we instead implemented a
variant in which we gradually generated particles of varied
lengths in a constant frame interval and checked the likelihood
of the given segment, considering that as a full activity
trajectory from a classifier.

We did not restrict the number of activities while generating
particles via the CPD method; however, as CPD is unable
to incrementally update particles likelihood, it must generate
particles of various lengths. Thus, when CPD had to generate
particles for all activity types, the segmentation process
became very slow, and it was unable to finish within

TABLE II: Activity segmentation accuracy (%) of the FOSAPT algorithm
and the percentage of initial frames of the whole trajectory it observed to
accurately detect an activity applied to the Auto-DA dataset

Segmentation accuracy (%) Initial frames (%) to detect
mv dash 78.0 14.3
mv meter 76.0 23.4
col meter 90.0 31.4
pl meter 66.0 37.4
mv nav 68.0 47.8
col nav 82.0 32.5
pl nav 68.0 50.1

exit 50.0 14.8
Average 72.2 31.6

10 minutes (each task was 54.4 sec long, on average).
Therefore, we incorporated the FAL (in Section III-D) and
φ (in Section III-I) to keep computation tractable. We set
|FAL| = 3 and φ = −5.0, same as the setting for FOSAPT.

We set the following parameters of TSC for all datasets,
in keeping with the parameters used in Krishnan et al.
[10]: window size = 2, normalization = False, and
pruning = 0.8, and followed a similar approach for activity
label generation for the segments taken in [10].

We report segmentation accuracy across all three datasets
for FOSAPT, the changepoint detection (CPD) algorithm, and
the transition state clustering algorithm (TSC) in Table III.
The results suggest that FOSAPT was more accurate than
either CPD or TSC across all three datasets, and that FOSAPT
achieved an improvement in accuracy ranging from 11.3%
to 65.5% vs. CPD and TSC. It also demonstrated accuracy
as high as 88.8% for the Static-Reach dataset.

We also present the number of missing activity segments
reported by the algorithms in Table IV. The number of
missing segments was calculated by counting the number of
segments from the ground-truth data that the algorithms did
not reported. Our findings suggest that FOSAPT failed to
detect segments in fewer cases than either CPD or TSC in
both the Auto-DA and UTKinect datasets (5.8% and 0.0%,
respectively). CPD yielded fewer missing segments (3.8%)
than FOSAPT (4.4%) for the Static-Reach dataset; however,
CPD also demonstrated a lower accuracy within that dataset
(20.0% accuracy compared to 88.8% with FOSAPT).

C. Performance with partial observance of trajectory data

FOSAPT is capable of detecting activities by observing
just a partial trajectory of the full demonstration. We first
measured how long our algorithm took to report the ground-
truth activity label after the start of the activity. We then
subtracted the ground-truth start time of each activity from
the time when FOSAPT first reported that activity, and
normalized it using the total duration of that ground-truth
activity segment. Here, we only considered activity segments
that were accurately segmented by FOSAPT. The results,
presented in Table II, Col 3, indicate that FOSAPT can
segment out activities just by observing 31.6% of the full
trajectory of an activity (on average).

VI. DISCUSSION

FOSAPT outperformed all other evaluated baselines across
all datasets and metrics tested. It performed best on the

TABLE III: Accuracy (%) of FOSAPT, CPD and TSC across three datasets

Auto-DA UTKinect Static-Reach
FOSAPT 72.2 70.5 88.8

CPD 42.9 43.4 20.0
TSC 6.7 59.2 69.6

Static-Reach dataset (88.8% accuracy), as most of the demon-
strations of this dataset followed similar paths during activity
executions and exhibited relatively less jerky motion. Thus,
the computed likelihood values were less ambiguous between
consecutive activities, aiding in the accurate identification
of activity segments. On the other hand, in the case of the
UTKinect dataset (70.5% accuracy), various people performed
similar actions in different ways, which could have contributed
to ambiguous likelihood values for the changepoint positions
and resulted in less-accurate performance by FOSAPT.

TSC demonstrated reasonably high accuracy for the
UTKinect and Static-Reach datasets (59.2% and 69.6%,
respectively); however, it only achieved 6.7% accuracy on
Auto-DA. In the UTKinect and Static-Reach datasets, non-
activity segments were removed and only labeled activity
segments were temporally combined; thus, in many instances,
there was a substantial change to the trajectories near the
activity changepoints. As TSC clusters similar data patterns,
this change might contribute to better activity segmentation.
However, this was not the case for the Auto-DA dataset, as it
contains continuous trajectory frames for each demonstration,
and TSC failed to find appropriate changepoints across the
demonstrations, as each person might perform the same
activity differently in space and time.

On the other hand, CPD demonstrated segmentation
accuracy of 42.9% for the Auto-DA dataset and 43.4% for
the UTKinect dataset, but of only 20.0% on the Static-Reach
dataset. As CPD is an online algorithm, the frame rate
contributed to its performance: the Static-Reach dataset had a
higher frame rate (120 Hz) than the other datasets (30 Hz for
Auto-DA and 15 Hz for UTKinect); thus, CPD had to generate
more particles with a small degree of variation on the data,
which could result in many inaccurate segment detections.

VII. ROBOT DEMONSTRATION

We applied FOSAPT in an industrial setting via a robot
demonstration. In this scenario, a collaborative industrial
robot tracked a human worker’s progress through a dashboard
assembly task using FOSAPT, providing the person with the
right materials for assembly at the appropriate time. A video
of the demonstration is available here: http://tiny.cc/FOSAPT.

VIII. CONCLUSION

In this work, we presented FOSAPT, an online activity
segmentation algorithm capable of accurately identifying and
labeling activity segments. We modeled the transitions be-
tween activity classes as a hidden Markov model in FOSAPT,
which inferred the maximum a posteriori estimate of the
sequence of activity classes via a particle-filtering approach
and predicted the timing of future activities, complemented
by an online search process to refine activity segments via
task model information about the partial order of activities.
FOSAPT demonstrated improved segmentation accuracy

TABLE IV: Missing segments (%) by each algorithm across three datasets

Auto-DA UTKinect Static-Reach
FOSAPT 5.8 0.0 4.4

CPD 35.0 2.1 3.8
TSC 72.0 17.5 16.0

compared with two state-of-the-art segmentation algorithms,
and was able to segment activities only by processing a part
of the full activity trajectory (31.6% of the initial trajectory)
while running online. We implemented the algorithm in a
collaborative industrial robot, in a scenario in which the
robot tracked a human worker’s progress through a dashboard
assembly task and provided the person with the right materials
for assembly at the right time.

REFERENCES

[1] L. Riek, “Healthcare robotics,” Communications of the ACM, 2017.
[2] M. J. Matarić, “Socially assistive robotics: Human augmentation versus

automation,” Science Robotics, 2017.
[3] V. V. Unhelkar, H. C. Siu, and J. A. Shah, “Comparative performance of

human and mobile robotic assistants in collaborative fetch-and-deliver
tasks,” in HRI, 2014.

[4] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic, and R. Alami, “Arti-
ficial cognition for social human–robot interaction: An implementation,”
Artificial Intelligence, 2017.

[5] T. Iqbal and L. D. Riek, “A Method for Automatic Detection of
Psychomotor Entrainment,” IEEE TAC, 2016.

[6] N. Sebanz, H. Bekkering, and G. Knoblich, “Joint action: bodies and
minds moving together,” Trends Cogn Sci, 2006.

[7] S. Nikolaidis, D. Hsu, and S. Srinivasa, “Human-robot mutual adapta-
tion in collaborative tasks: Models and experiments,” IJRR, 2017.

[8] T. Iqbal, S. Rack, and L. D. Riek, “Movement coordination in human-
robot teams: A dynamical systems approach,” IEEE TRO, 2016.

[9] P. A. Lasota, T. Fong, and J. A. Shah, “A survey of methods for safe
human-robot interaction,” Foundations and Trends in Robotics, 2017.

[10] S. Krishnan, A. Garg, S. Patil, C. Lea, G. Hager, P. Abbeel, and
K. Goldberg, “Transition state clustering: Unsupervised surgical
trajectory segmentation for robot learning,” IJRR, 2017.

[11] C. Wu et al., “Watch-n-patch: unsupervised learning of actions and
relations,” PAMI, 2018.

[12] E. B. Fox, M. C. Hughes, E. B. Sudderth, M. I. Jordan, et al., “Joint
modeling of multiple time series via the beta process with application
to motion capture segmentation,” Annals Applied Statistics, 2014.

[13] P. Bojanowski, R. Lajugie, F. Bach, I. Laptev, J. Ponce, C. Schmid, and
J. Sivic, “Weakly supervised action labeling in videos under ordering
constraints,” in ECCV, 2014.

[14] P. Fearnhead and Z. Liu, “Efficient bayesian analysis of multiple
changepoint models with dependence across segments,” Statistics and
Computing, 2011.

[15] L. Xia, C.-C. Chen, and J. K. Aggarwal, “View invariant human action
recognition using histograms of 3d joints,” in CVPRW, 2012.

[16] P. A. Lasota and J. A. Shah, “Analyzing the effects of human-
aware motion planning on close-proximity human–robot collaboration,”
Human factors, 2015.

[17] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal
convolutional networks for action segmentation and detection,” in
International Conference on Computer Vision (ICCV), 2017.

[18] H. Kuehne, J. Gall, and T. Serre, “An end-to-end generative framework
for video segmentation and recognition,” in WACV, 2016.

[19] F. Zhou, F. De la Torre, and J. K. Hodgins, “Hierarchical aligned cluster
analysis for temporal clustering of human motion,” PAMI, 2013.

[20] S. Niekum, S. Osentoski, et al., “Learning and generalization of
complex tasks from unstructured demonstrations,” in IROS, 2012.

[21] P. Fearnhead and Z. Liu, “On-line inference for multiple changepoint
problems,” Journal of the Royal Statistical Society: Series B, 2007.

[22] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning
from demonstration by constructing skill trees,” IJRR, 2012.

[23] B. Hayes and J. A. Shah, “Interpretable models for fast activity
recognition and anomaly explanation during collaborative robotics
tasks,” in ICRA, 2017.

[24] B. Hayes and B. Scassellati, “Autonomously constructing hierarchical

task networks for planning and human-robot collaboration,” in ICRA,
2016.

	I Introduction
	II Related Work
	III Methodology
	III-A Problem Formulation
	III-B Approach in a Nutshell
	III-C Activity Likelihood Calculation from Partial Trajectories
	III-D Task Structure Modeling
	III-E Activity Prior Computation
	III-F Activity Transition Modeling
	III-G Incremental Pt(j, a) Computation Through Merging
	III-H Resampling
	III-I Compute Activity Segments
	III-J Activity Time Prediction and Dynamic Adjustment
	III-K Refine Activity Segments

	IV Experimental validation
	V Results
	V-A Evaluation metrics
	V-B Accuracy of FOSAPT
	V-C Performance with partial observance of trajectory data

	VI Discussion
	VII Robot Demonstration
	VIII Conclusion

