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I. INTRODUCTION AND BACKGROUND

Gathering the most informative data from humans without
overloading them remains an active research area in Al, and
is closely coupled with the problems of determining how and
when information should be communicated to others [12].
Current decision support systems (DSS) are still overly simple
and static, and cannot adapt to changing environments we
expect to deploy in modern systems [3[], [4], [9]], [11]. They
are intrinsically limited in their ability to explain rationale
versus merely listing their future behaviors, limiting a hu-
man’s understanding of the system [2]], [7]]. Most probabilistic
assessments of a task are conveyed after the task/skill is
attempted rather than before [[10], [[14], [[16]]. This limits failure
recovery and danger avoidance mechanisms. Existing work
on predicting failures relies on sensors to accurately detect
explicitly annotated and learned failure modes [13]]. As such,
important non-obvious pieces of information for assessing
appropriate trust and/or course-of-action (COA) evaluation in
collaborative scenarios can go overlooked, while irrelevant
information may instead be provided that increases clutter
and mental workload. Understanding how AI models arrive at
specific decisions is a key principle of trust [§]]. Therefore, it is
critically important to develop new strategies for anticipating,
communicating, and explaining justifications and rationale for
Al driven behaviors via contextually appropriate semantics.

II. CURRENT WORK

To address the need for robots to effectively collaborate with
humans, we have been working on methods for establishing
a shared mental model amongst teammates. In the case of
incongruous models, catastrophic failures may occur unless
mitigating steps are taken. To identify and remedy these
potential issues, we proposed a novel mechanism for enabling
an autonomous system to detect model disparity between itself
and a human collaborator, infer the source of the disagreement
within the model, evaluate the potential consequences of this
error, and finally, provide human-interpretable feedback to
encourage model correction. This process effectively enables
a robot to provide a human with a policy update based on
perceived model disparity, reducing the likelihood of costly or
dangerous failures during joint task execution.

We modelled our framework upon the assumption that
sub-optimal collaborator behaviour is the result of a mis-
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Fig. 1: Task executions given two different comprehensions of
a gridworld domain’s reward function. Left: Both rewards are
known based on the path taken. Right: Reward ry is assumed
to be unknown based on the path taken by the human.

informed understanding of the task rather than a problem
with the collaborator’s rationality. Formulated as a Markov
Decision Process, a human’s sub-optimal decision-making
could be attributable to a malformed policy given an incorrect
task model. Building on this assumption, we created an
autonomous collaborative agent that was able to: 1) infer the
most likely reward function used as a basis for a human’s
behavior; 2) identify the single most detrimental missing piece
of the reward function; and 3) communicate this back to the
human as actionable information to enable the collaborator to
update their reward function (task comprehension) and policy
(behavior).

A. A Framework for Reward Augmentation and Repair
through Explanation

Our proposed framework, Reward Augmentation and Repair
through Explanation (RARE), utilizes a Partially Observable
Markov Decision Process (POMDP) coupled with a family
of Hidden Markov Models (HMMs) to infer and correct a
collaborator’s task understanding during joint task execution
through updates to their reward function. Once a plausible
reward function is discovered that explains the collaborator’s
behaviour, a repairing explanation can be generated and pro-
vided if the benefit of correction outweighs the consequences
of ignoring it and proceeding with the task.

1) Estimation of Reward Comprehension

To determine which components of the reward function
the human collaborator is using, RARE utilizes an HMM
that incorporates both state features of the world (“world
features”) and latent state features that indicate knowledge of
the corresponding components of domain’s reward function
(“comprehension features”).



2) Collaborative Task execution and Reward Repair

For a given collaborative task, we define the RARE agent’s
behaviors with a policy that solves an augmented POMDP
(RARE-POMDP) which uses augmented states, consisting
of both world features and comprehension features. RARE-
POMDP’s estimate of which reward function the collaborator
is following is proportional to the likelihood that their behavior
was informed by a policy derived from it (Figure [I). The
RARE-POMDP introduces the opportunity for the agent to
make the decision to execute social actions aimed at better
informing a collaborator about the domain’s reward function,
in addition to traditional task-progressing actions. In other
words, the agent may execute a communicative action to
explicitly inform a collaborator about part of the reward
function which is missing from their belief, directly changing
the value of a latent comprehension feature.

3) Explanation Generation

The RARE framework allows an agent to estimate a col-
laborator’s reward function during joint task execution. This
is far more useful in a collaborative context when paired with
actions that enable one to augment a collaborator’s under-
standing of the task. For our application domain, we proposed
an algorithm that autonomously produces statements capable
of targeted manipulation of a collaborator’s comprehension
features based on anticipated task failures.

B. Results

To quantify the viability and effectiveness of RARE, and
to evaluate our hypotheses within a live human-robot collab-
oration, we conducted a between-subjects user study using a
color-based collaborative Sudoku variant and an autonomous
robot (Rethink Robotics Sawyer). Study participants were
assigned into one of two conditions: 1) Control: The robot
interrupts users that are about to make mistakes, indicating to
them that it will cause task failure; 2) Justification: The robot
interrupts users about to make mistakes, indicating that it will
cause task failure and explaining which game constraint will
inevitably be violated.

Subjectively, we were able to confirm the following two
hypotheses: 1) HI: Participants will find the robot more helpful
and useful when it explains why a failure may occur and 2)
H2: Participants will find the robot to be more intelligent when
it gives justifications for its actions [[15].

Objectively, we observed that there were more terminations
(irremediable mistake) of the game during the control condi-
tion as compared to the justification condition (80% vs 20%).
From the responses, we were able to deduce reasons for more
terminations in the control condition — participants did not
trust Sawyer when it indicated that the human was about
to make a critical mistake, when it did so without further
explanation. They were skeptical with respect to Sawyer,
who was not providing accompanying justification for its
judgment of their move. We also found evidence in the surveys
supporting the notion that providing justification alongside
feedback leads to a more positive user experience. Our results
highlight that justification is an important requirement for a

robot’s corrective explanation. Hence, we validated that our
contribution is not a solution in search of a problem, but
addresses an important, underexplored capability gap in the
HRI and Explainable Al literature.

III. FUTURE WORK

One of the drawbacks of RARE is that our formulation
of ‘comprehension features’ causes a combinatorial expan-
sion of state space, with non-trivial reward functions causing
RARE to easily become intractable. There are many potential
approaches for addressing this problem in terms of accom-
modating arbitrary reward functions with a reduced set of
comprehension features (i.e., making a priori assumptions
about what one’s collaborator knows), or providing more
easily solved approximations of the true reward function (i.e.,
approximation using fewer reward factors).

State abstraction is a vital application for policy itera-
tion, enabling effective generalization that provides dramatic
complexity reduction in exchange for sacrificing fine state
granularity [5]]. Abel et al. provided state abstraction theory out
of the traditional single task setting by exploring the benefits
and pitfalls of learning and planning with various types of
state abstractions [1]]. As an extension to our current RARE
framework, we will be using graph-theoretic techniques to
investigate the conductivity of MDP subgraphs and discon-
tinuities within the MDP’s converged state-value function for
contraction into an abstract states that go beyond the limita-
tions of existing methods [|6]. This module of state abstraction
will help RARE enabled agents to tractably estimate human
policies and provide policy updates by way of explanation
even within complex tasks.

The RARE framework provides an explanation for the sub-
optimal behavior of the human, but in its current form lacks
a necessary comprehensibility of its optimal policy. Recall
that an agent’s policy is a scalar representation of that agents
consideration of risks and rewards given a state and prospec-
tive action. The factors that went into that consideration are
lost during the computation of an optimal policy, as future
outcomes are merged together into an expectation during
policy (or value function) updates. Therefore, reinforcement
learners cannot articulate rationale for its actions or ‘concerns’
in a human interpretable way until this is addressed through
novel bookkeeping techniques.

IV. CONCLUSION

In conclusion, we have proposed a novel framework for
estimating and improving a collaborator’s task comprehension
and execution. By characterizing the problem of sub-optimal
performance as evidence of a malformed reward function, we
introduce mechanisms to both detect the root cause of the
sub-optimal behaviour and provide feedback to the Human to
repair their decision-making process. In the future, we would
continue focusing on the intersection of explainable Al (xAI)
and human-robot collaboration : 1) Developing a scalable
framework for human policy estimation and reward coaching
and, 2) Propose a novel framework of policy explanation for
the robot by bookkeeping during policy iteration.
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