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ABSTRACT
We present a framework for the formal evaluation of human tele-

operator skill level in a systematic fashion, aiming to quantify how

skillful a particular operator is for a well-defined task. Our proposed

framework has two parts. First, the tasks used to evaluate skill levels

aredecomposed into a series of domain-specificprimitives, eachwith

a formal specification using signal temporal logic. Secondly, skill

levels are automatically evaluated along multiple dimensions rather

than a singular number. These dimensions include robustness, effi-

ciency, resilience and readiness for each primitive task. We provide

an initial evaluation for the task of taking-off, hovering, and landing

in a drone simulator. This preliminary evaluation shows the value

of a multi-dimensional evaluation of human operator performance.

CCS CONCEPTS
•Human-centered computing→Human computer interac-
tion (HCI); • Theory of computation→ Logic.
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1 INTRODUCTION
Skill is a highly valued attribute for numerous human endeavors.

Thus, itsmeasurement isofgreat importance.Theneed forhumans to

co-operate with an autonomous system to skillfully complete safety-

critical tasks is common across diverse domains such as surgery,

planetary exploration, and visual inspection using drones.

The problem of measuring skill is well-known to be extremely

hard. Existing approaches use examinations of an operator by quali-

fied judgeswho provide numerical scores. This process is often effort

intensive, subject to bias and hard to automate. As a result, the nu-

merical scores for different operators who undergo different exams
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judgedbyadifferent panel of judges arehard to compare against each

other. The sameproblemariseswhen it comes to judging the sameop-

erator at different points in time to measure their learning progress.

Thus, we need a framework for quantifying skill that is based on sim-

ple principles that can be applied uniformly in an unbiased manner.

Also, the idea of a single number representing skill level lacks nuance.
For instance, a particular operator’s performance may exhibit better

safety margins for the desired specifications while sacrificing on

time efficiency. This sort of nuance is often absent in a single score.

In this paper, we attempt to formulate such a framework using

a combination of ideas from logic and control theory. Our proposed

frameworkfirst identifiesprimitive tasks thataskillfuloperatorneeds
to demonstrate. Next, we use signal temporal logic (STL) to specify

these tasks inanunambiguousmanner [7, 15] anddefine skill as avec-
tor that measures the demonstrated performance of a task. Next, we

reflect on the various aspects that characterize a skillful performance.

The Merriam-Webster dictionary defines skill (as in skillful per-

formance) as “the ability to use one’s knowledge effectively and readily
in execution or performance.” Analyzing the definition of skill from
related sources such as the Oxford English dictionary andWikipedia

suggests the following dimensions of a skillful performance:

Robustness: Performance of the required task that is clearly
correct (compared to barely correct) under nominal conditions. This

aspect is especially important for safety-critical tasks.

Efficiency: Performance that minimizes time and energy.

Resiliency: Performance under varying environmental condi-

tions for the teleoperated system.

Readiness: Performance under variations in the human factors:
eg., at different times of day or different levels of comfort.

While we use dictionary definitions here to motivate the problem,

we review relevant literature frompsychology, cognitive science and

human factors in Section 1.1 to provide a more rigorous background.

In this paper, we design a framework that seeks to evaluate each

of these aspects of skillful performance in the context of teleoper-

ating a drone. We formalize notions of robustness and efficiency

while demonstrating how these notions allow us to evaluate human

teleoperation of a drone in a simulation environment.

1.1 RelatedWork
To define tasks for robots, previous work has focused on the use of

skill primitives, which are atomic actions that may be combined and

sequenced depending on the target task. For example, [12] defines

manipulation primitives which are defined by parameterized twist

and wrench trajectories. Other work uses these skill primitives in

directed graphs [25] or a relational assembly model [19]. From a

human-robot interaction perspective, robotic skill primitives can be

used in interfaces to allow human users to quickly define different
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tasks [24]oreasily transfer tasksbetweenrobotic systems[21].These

approaches are generally evaluated based on the performance of the

robotic system; that is, whether the task is successfully completed

and other performance metrics such as time-to-completion.

Compared to robotic systems, definingandmeasuringhumanskill

proves to be less clear. Defining and assessing human skill typically

involves an “I know it when I see it” approach. Our goal here is to

develop a comprehensive and more formal approach. Teleoperation

tasks of interest involve psychomotor skills, which require coordina-

tion between physical (e.g., limbs, muscles) movements in response

to sensory stimuli (e.g., noticing wind in a teleoperation task) [20].

Since human-performed tasks are usually much more complex than

those performed by robotic systems, the evaluation criteria vary

considerably. For example, [6] measured skill in robotic surgical

knot-tying using an expert-developed rubric of steps, where each

step earned points and errors lowered the final score. Other work de-

fines skill as the averageperformance over a set of attempts in a video

game [5] and differentiates skill as a task-oriented value compared

to ability, which is a stable trait. More generally, researchers have

qualitatively [10] described motor skill improvement in terms of

reduced variability and increased smoothness [23] or cognitive load

reduction that allows the user to address other demanding tasks [1].

2 PROPOSED SKILL FRAMEWORK
Wefirst describe primitive tasks specified using temporal logic. Next,

we will use this in our framework to measure skill levels.

2.1 Primitive Tasks and Skills
Our proposed framework for measuring skillfulness starts from a

domain-specific knowledge of what tasks are to be performed by the

operator. For instance, consider the job of teleoperating a drone to

perform an inspection of an oil rig. To perform the overall inspec-

tion successfully, the operator must be able to perform numerous

atomic, primitive tasks such as taking off, maneuvering, hovering

and landing. The operator will need to be skilled in performing these

primitive tasks in an appropriate manner to complete the overall

task at hand. Although the set of all tasks that an operator can be

called to perform can be a forbiddingly large, we can enumerate a

relatively smaller number of primitives that can be sequenced and

combined to form complex tasks.

For drone teleoperation, we define several (but not all possible)

primitive tasks and the required drone input controls in Table 1.

These tasks can be sequenced and combined to form complex tasks;

for example, the operator may take off, perform a circular trajectory

around a landmark while also keeping the camera trained on it, and

land near a charging station.

Next, we need to carefully specify each of these primitives for-

mally. Temporal logics were originally proposed for this purpose in

the field of computer-aided verification of hardware and software

systems [2, 17] and subsequently adopted to robotics as a means for

specifying complex robotic tasks [4, 14, 16, 18, 22]. The primitive

tasks can be easily specified using a suitable temporal logic. We

propose to use metric/signal temporal logics (STL) which include

ability to specify real-time constraints as part of the logic [7, 15].

Let (𝑥 (𝑡),𝑦 (𝑡),𝑧 (𝑡)) represent the position of a drone with 𝑦 axis

pointing vertically up, and (𝑣𝑥 (𝑡),𝑣𝑦 (𝑡),𝑣𝑧 (𝑡)) represent velocities

Table 1: Selection of primitive tasks for drone teleoperation

Primitive Task Controls Required

Angled takeoff upward throttle + pitch or roll

Angled landing downward throttle + pitch or roll

Straight angled line fixed pitch + roll

Curving line changing pitch + roll

Perspective change yaw

Hover in place throttle

Maintain altitude hover in place + pitch, roll, or yaw

𝑇1

𝑇2

𝑇3

𝑇4

𝑅1

𝑅2

Figure 1: Illustration of robustness for various trajectories
𝑇1−𝑇4 for a drone. The desired task specification is to avoid
the shaded region 𝑅1 and reach region 𝑅2.

along the respective axes. We will omit other state variables that

describe attitude and control inputs𝑢 (𝑡) for simplicity.

Hover in place for some time: Let [𝑦min,𝑦max] denote the de-
sired range of altitude and [−𝜖,𝜖] denote the desired limits on the

velocity for some 𝜖 > 0. Let𝑇 be the minimum amount of time we

require theUAV tohover in place. In signal temporal logic,we specify

the desired task as follows:

Eventually

(
Always[0,𝑇 ]

(
𝑦 ∈ [𝑦min,𝑦max] ∧ |𝑣𝑦 | ≤𝜖

) )
.

Note that constraints on the attitude can exist but are omitted for

simplicity. This formula requires us to find a time window of at least

𝑇 seconds where the𝑦,𝑣𝑦 are within desired bounds.

Vertical Takeoff: We specify a vertical takeoff from the ground

𝑦 = 0 to some altitude range 𝐻 ±𝜖 and a level velocity limit 𝛿 > 0

within𝑇 seconds. We specify this as:

(𝑣𝑦 ≥ 0) until[0,𝑇 ]
(
|𝑦−𝐻 | ≤𝜖 ∧ |𝑣𝑦 | ≤𝛿

)
.

The property specifies that the UAV rise up from the ground until

it achieves an altitude in the range𝐻±𝜖 with the vertical velocity
in the range ±𝛿 . A vertical landing can be similarly specified.

Temporal Logics provide two advantages: (a) unambiguous spec-

ification language that is close to natural language and can be ef-

ficiently monitored in real-time [3]; and (b) the ability to measure

compliance in terms of distance between the operator’s trajectory

and a desired specification. The latter property is called robustness

and will be explained in the subsequent section.

2.2 Measuring Skill
Robustness: Wemeasure robustness of a task performance as a

numerical distance between the actual performance and the desired

task specification. Consider four trajectories𝑇1−𝑇4 in Figure 1. The
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overall task specification is to avoid region 𝑅1 and reach 𝑅2. We note

that trajectories𝑇1 and𝑇3 both achieve this task. However,𝑇1 is seen

to be more “robust” in achieving the specification than𝑇3 since it

avoids 𝑅1 with a larger margin. At the same time𝑇2 and𝑇4 violate

the specification. However, a small perturbation of𝑇4 could have po-

tentially caused it to reach the region𝑅2 and satisfy the specification.

As a result,𝑇4 is a “less severe” violation than𝑇2.

The task in Figure 1 is specified in Signal Temporal Logic (STL):

Always(¬𝑅1)︸           ︷︷           ︸
avoid 𝑅1

∧ Eventually(𝑅2)︸                ︷︷                ︸
Reach 𝑅2

The previous work of Fainekos et al [9] and Donze et al [8] allow

us to systematically compute robustness values with respect to the

STL specification. This robustness has a positive value for trajecto-

ries that satisfy this property and negative values for violating the

trajectory. Robustness measures the diameter of the smallest “tube”

around a trajectory such that all trajectories that stay inside this

tube have the same outcome (satisfaction or violation) as the original

trajectory. Thus, 𝑇1’s robustness will yield a large positive value,

whereas𝑇3’s robustness will be positive but smaller. Likewise,𝑇2’s

robustness will be a negative value with a large magnitude whereas

𝑇4’s robustness is also negative but with a small magnitude.

Efficiency: Efficiency is concerned with minimizing use of re-

sources. We can consider resources such as: (a) Time efficiency: how
much time is taken by the operator to complete the task? (b) Resource
efficiency:Howmuchenergy is expendedby theoperator?Often, con-

trol designers express the resource efficiency as a function over the

states of the trajectory and the control action of the human operator.

While this isdomainspecific, it is easy toexpress andevaluate system-

atically. (c) Control Variation: is the applied control jerky or smooth?

This can bemeasured by computing the total variation distance over

the operator inputs. Depending on the domain, there may be many

types of efficiency, each contributing to a different skill dimension.

Resilience: Resilience pertains to the correct execution of a task
under varying environmental conditions. In a teleoperation setting

these apply to the environment surrounding the remote system.

Thus, for a teleoperated drone environmental conditions manifest

in many ways including wind, sensor malfunctions, and damage to

the drone. To measure resilience, we propose repeated execution of

a task under unanticipated off-nominal conditions and measuring

how robustness of the resulting trajectories vary with changing

environmental conditions.

Readiness: Readiness depends on the context surrounding the op-
erator themselves. We posit that skilled operators exhibit readiness

against changingcontexts thatmay include their physical comfort, or

biological state such as time since lastmeal or sleepiness. This aspect

of skill is the hardest tomeasure systematically since it is often unde-

sirable to subject humans knowingly to adverse physical conditions.

3 EVALUATION
We conducted an initial evaluation of the proposed skill assessment

approach using data collected from a convenience sample of five

individuals. Using a drone piloting simulation implemented in Unity

(see Figure 2) and an Xbox controller, the target task was to take

off vertically to reach the floating target, hover within the floating

target for five consecutive seconds, and land vertically to reach the

landing pad. Note that if the drone strays from the target area during

the hover segment, the timer is reset. Each person recorded two

attempts of the specified task, yielding 10 different trajectories.

Figure 2: Unity-based Drone piloting simulator.

For each trajectory, we evaluated skill along the Robustness and

Efficiency dimensions. We discuss possible elicitation of Resiliency

and Readiness in the next section.

Robustness: The specifications of takeoff and hover are as spec-

ified in Section 2.1. The specification for landing is similar to takeoff

but specifies a negative 𝑣𝑦 until the drone reaches a minimum alti-

tude with an appropriately small vertical velocity. We implemented

a robustness computation engine as a simplified version of the tool

TaLiRo [11]. We calculated separate robustness scores for each of

the three task segments.

Efficiency: Wemeasured time efficiency as the time required to

completeeachsegmentof the task,where longer timesareconsidered

less efficient. For the takeoff and landing segments, the minimum

time (and thus most time efficient) to complete the task is essentially

0 seconds. For the hover task, time efficiency is the time required to

complete the hover outside of the minimum 5 seconds (if the drone

never leaves the target area).

We measured control variation using mean variation distance.

For each time 𝑡 , wemeasured the distance between the control input

vector (𝑟𝑜𝑙𝑙,𝑝𝑖𝑡𝑐ℎ,𝑦𝑎𝑤,𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒) and the control input vector at time

𝑡+1, scaling by the size of the time step. Smoother control actions

yield less change and smaller distances between the control input

vectors. To remove redundancy with the time efficiency measure,

we computed the mean control variation over the given segment.

Efficiency is coded as a negative number, so larger (negative) values

represent lower efficiency; this is done to align with intuition that

higher numbers are better scores.

4 RESULTS ANDDISCUSSION
Wepresent the robustness and efficiencymeasures for each recorded

segment in Table 2. One immediate finding is that all robustness

estimates for the takeoff and landing segments are negative, which

means that none of the recorded trajectories met the desired spec-

ifications. In particular, users flew the drone too fast at the end of

the takeoff segment, overshooting the desired ending location. For

the landing segment, participants often missed the task change and

hovered too long before landing using a high speed. All robustness
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Table 2: Robustness and efficiencymeasures for each recorded trajectory. The best values in each column are bolded and the
worst values are italicized. RO = Robustness, TE = Time Efficiency, and CE = Control Efficiency

Takeoff Hover Land

Participant Trial RO TE CE RO TE CE RO TE CE

1

1 -4.99 -5.90 -1.79e-06 0.25 -40.32 -1.92e-06 -0.82 -5.38 -5.74e-06

2 -2.54 -6.11 -1.74e-06 0.09 -5.94 -2.91e-06 -2.19 -6.08 -2.60e-06

2

1 -7.14 -6.34 -1.62e-06 0.44 -44.72 -4.82e-06 -1.55 -3.53 -6.00e-06

2 -3.72 -7.60 -2.62e-06 0.12 -15.66 -4.89e-06 -1.59 -4.42 -6.58e-06

3

1 -1.66 -12.59 -2.51e-06 0.38 -22.40 -9.72e-06 -1.31 -3.23 -3.03e-06

2 -7.12 -8.70 -0.85e-06 0.25 -7.74 -6.62e-06 -0.65 -2.58 -2.07e-06

4

1 -1.63 -7.95 -1.97e-06 0.71 -5.22 -6.84e-06 -1.46 -3.85 -6.96e-06
2 -0.51 -10.33 -1.97e-06 0.93 -7.10 -6.81e-06 -0.13 -4.44 -4.46e-06

5

1 -0.00 -9.60 -5.67e-06 1.08 -6.06 -11.55e-06 -1.85 -4.69 -5.65e-06

2 -4.84 -5.42 -2.56e-06 0.95 -13.92 -8.15e-06 -1.32 -2.73 -6.01e-06

(a) Participant 5, Trial 1 (b) Participant 3, Trial 2

Figure 3: Example user trajectories. The vertical position
(inmeters) is plotted over time (in seconds). The red vertical
lines indicate the transition between task segments.

estimates for the hover segments were positive by design, since the

simulatorwouldnot trigger the next segment until the drone success-

fully hovered at the target for the desired length of time (5 seconds).

The control efficiency values are very small. This is likely due

to the fact that the simulator task only required use of one control

input (throttle) and thus the overall control input needed was very

small. However, we do see relative differences in control efficiency

between the recorded segments, with the hover task showing overall

less control efficiency than the takeoff or landing segments.

We arrive at more interesting findings by investigating the rela-

tionship between the different skill measures. First, notice in Table 2

that Participant 5 in Trial 1 achieved the best robustness and the

worst control efficiency in the takeoff and hover segments (see Fig-

ure 3a). This could be caused by the user “feathering” the controls

in order to correct their trajectory. On the other hand, Participant

3 in Trial 2 achieved the best robustness, time efficiency, and control

efficiency in the landing segment (see Figure 3b). This shows that

these dimensions of skill are not necessarily correlated, and may re-

flect individual user operating styles. Note that we cannot draw any

generalized examples here due to our small and non-representative

sample of operators; we merely attempt to highlight the nuance

afforded by measuring skill along multiple dimensions.

Defining skill along multiple dimensions provides system design-

ers with important decisions as they develop products and interven-

tions. For a specific domain, which aspect of skill is most important?

Perhaps the given task is so safety-critical that robustness is the only

dimension that matters. Other tasks may depend more on resource

efficiency. While we propose several possible dimensions of skill,

dimension reduction techniques applied to a larger volume of data

may indicate a smaller set of latent dimensions that measure skill.

A limitation of this preliminary analysis is that our data did not

allow us tomeasure the skill dimensions of Resiliency and Readiness.

Future work can specifically test these dimensions in a controlled

user study by varying conditions in the simulator (e.g., wind, time of

day) or the user’s conditions (e.g., before/after meals, using distrac-

tor tasks). Future work can also extend the proposed framework to

describe more complicated tasks that require concurrent primitive

skills. Following additional user studies, we can also calculate the

distribution of these skill values across a larger population as well

as plotting learning curves to see how users improve in various skill

dimensions over repeated trials. We plan to also incorporate user

confidence ratings of their performance and structured interviews to

investigate howusers experience skill development. For example,we

may see a change from effortful to automatic control such as in [13]

or other more qualitative stages of development as users acclimate

the control into their own body perception [1, 10].

5 CONCLUSIONS
This paper presents a skill measurement framework that argues for

a careful identification of the various primitive tasks, their formal

specification using temporal logic and amulti-dimensional approach

Our preliminary evaluation on a small, non-representative set of

trajectories shows some of the benefits of this approach. We have

also presented a vision of how the proposed approach may lead to

a comprehensive skill evaluation framework in the future.
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