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1 Introduction

Reading comprehension is a critical skillset for student success in education. The U.S. Common Core guidelines expect
students to be able to identify key details, main topics, and connections between events in multi-paragraph informational
texts as early as the second grade. These skills are vital to tackling educational texts and gaining full reading proficiency
as students get older [1]. Those who struggle at this transition point from concrete decoding to conceptual understanding
are often very likely to continue to struggle with reading skills as their education progresses [2].

Despite a wide variety of new initiatives and educational practices aimed at improving reading skills in elementary
education [3], progress has largely stagnated in improving ELA education in the United States. Scores on the National
Assessment of Educational Progress long-term exams show only small improvements in performance for students at
ages 9 and 13 from 1971 to 2013 – but no statistically significant change at all for students at age 17 over the same
time period [4]. In addition, there continues to be a significant racial achievement gap in reading skills on standard
assessments, most prominently between white and black students, which begins at least as early as age 9 and tends to
persist or even widen by age 17 [2].

One promising avenue in educational research is the realm of cognitive learning theory. In recent decades researchers of
cognitive science and language have proposed and elaborated upon the thesis that reading comprehension is embodied –
that is, all cognitive processes involved in reading comprehension, however abstract they may appear, are grounded
in sensorimotor neural activity. This description has led to the development of a number of embodiment-centered
practices in reading education, several of which have seen promising results on the scales of entire schools or school
districts (see [5, 6]). While these practices vary in their particular approaches, they share a focus on grounding key
comprehension processes, such as main idea extraction and conclusion drawing, in multimodal experiences, mental
"images," and behaviors. The preliminary success of these practices when compared to standard approaches indicates
the vast potential of leveraging embodied learning in the classroom.

Given the value of multimodal, sensorimotor engagement in building strong reading comprehension skills, robot tutoring
systems are a prime candidate for implementing personalized, embodiment-centered techniques in the classroom. Robots
have significant potential to work with students in personalized 1-on-1 settings, in ways that are often not viable for
teachers – due to either their high numbers of students, or to students’ reluctance to make mistakes in front of a teacher
in such a close setting [7, 8]. While robot tutoring systems have seen impressive results in the domains of math and
STEM tutoring [9], second language learning [10], and social skills [11], as of yet few to no studies have touched on
the potential of applying robots to the development of abstract reading comprehension skills.

In this paper, we propose a classroom-based social robot tutoring system that targets reading comprehension skills,
using methods inspired by successful embodied reading pedagogical practices. This system will incorporate skill tracing
of reading comprehension skills in order to identify problem areas and help students ground their reading in concrete
experiences and ideas. We begin by providing background on embodiment-based pedagogy in the domain of reading
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comprehension, as well as the state of the art in robot tutoring and skill tracing methods. We then outline our proposed
implementation of such a system, and conclude by described our proposed evaluation setting and experimental setup.

2 Background and Related Work

2.1 Pedagogical approaches to reading comprehension

The embodied account of language understanding and reading comprehension has been incorporated into pedagogical
practices in a number of ways. In particular, one of the most well-extended specific embodied theories with respect
to literacy is Dual Coding Theory (DCT), which maintains that connections between verbal and nonverbal mental
simulations account for the comprehension of both concrete and abstract concepts. DCT has been implemented in
multiple forms of classroom practices aiming to strengthen these connections through multimodal integration, with
substantial success across grade levels. Key examples most relevant to our proposed work include Bell’s dialogue-based
Visualizing and Verbalizing (VV) [12] and Block et al.’s motor-focused Comprehension Process Motions (CPM) [13].
Notably, a key aspect of the above techniques, as well as related ones like the successful Extending Concept through
Language Activities (ECOLA) [14], is social interaction and dialogue. Verbal and non-verbal social interaction is
an embedded aspect of the embodiment-centered learning process, as both the pedagogical channel and the concrete
experience in which reading skills are grounded. Contrary to what might be expected, having students perform
analogous reading exercises alone, rather than in pairs, results in inferior gains in independent reading skills [14, 15].

2.2 Robotic tutoring

Current applications. Robotic tutoring has seen unprecedented success in application domains ranging from STEM
areas [9] to second-language learning [10, 16] to social therapies [11]. Despite these preliminary successes, applying
current robotic tutoring techniques to reading comprehension remains a largely unaddressed challenge. The most
closely related prior work to our objective is likely that conducted within the domain of second-language learning;
however, the majority of such applications have focused on concrete vocabulary or grammar rule acquisition, rather
than higher-order comprehension skills [10, 17].

Technical approaches to skill tracing. A key aspect of robot tutoring is the robot’s ability to track the progress of
the student: having a clear model of the mastered and not-mastered skills of the particular student, from which it can
make decisions about its next tutoring action. Partially Observable Markov Decision Processes (POMDPs) and variants
have been frequently used as a core pedagogical module with considerable success [18]. However, Rafferty et al. found
POMDPs are typically on par with Maximum Information Gain (MIG) algorithms in terms of the resulting action-policy,
until the skill space reaches a critical size. One of the most historically popular approaches to skill tracing is Bayesian
Knowledge Tracing (BKT), a variant of Hidden Markov Models consisting of observable "signal" variables and latent
"skill" variables. Many variants of BKT methods exist, from those that use affect as part of their skill belief-updates
to those that integrate many modeled skills into a single dynamic Bayesian network. Of particular note is Schodde et
al.’s Adaptive BKT-based tutoring model [17], which integrates models of the robot’s own actions to solve for the best
action at any given belief state. For our proposed study targeting only a few key skills with many potential actions,
BKT appears to be a fitting approach.

Social robotics for embodied learning. The success of embodied learning practices has flung open the door to
potential robotics applications. Embodied AI agents have many demonstrated advantages over screen-based agents in
tutoring contexts [19, 16, 8]. Part of the success of robots in learning domains can be traced to their unique role as a
physically present, social agent. Researchers have proposed that robots’ impressive value in working with children
with Autism Spectrum Disorder (ASD) stems from robots’ ability to be inherently rewarding to interact with, while
encouraging students to engage socially through their design and AI. Further, for both children and adults, robots have
the ability to shape group social interactions and influence prosocial behavior through their decisions and displays of
vulnerability [20]. This success as social agents positions robots as particularly well-suited to collaborative learning
environments, being able to encourage positive collaboration and engagement with the material.

Embodied learning practices are a prime domain in which to exploit the strengths of embodied agents to allow for more
engaging and effective tutoring. Robots also can be designed as inherently collaborative partners, allowing for learning
that is maximally multimodally engaging. Like many novel instructional techniques, a major potential roadblock to
any large-scale implementation of embodiment-centered practices is the amount of individual attention they might
demand from already overextended teachers. Robots in the classroom provide an exciting way to surpass this obstacle
and instate these effective learning practices on a larger scale.
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3 Methods

3.1 Tutoring goals

Using the theory and practices of Visualizing and Verbalizing (VV) as our central inspiration and the U.S. Common
Core standards to inform our goals, we aim to target some of the following skills at the second- and/or third-grade
levels:

• Concrete detail identification: Answering where, who, what questions about the text.

• Action/event detail identification: Answering why, how questions about events or actions in the text.

• Sequence explanation: Understanding the order of events or steps described in the text.

• Using context clues: Inferring the meaning of an unfamiliar word or phrase in a relevant text.

• Main topic/argument understanding: Understanding the primary argument or "main idea" of a text.

While this is by no means a comprehensive list of skills that could be targeted by such a system, these skills all depend
to varying degrees on strengthening what Bell [12] describes as "Gestalt understanding" of concepts conveyed in text.
This makes them particularly well suited to using VV-inspired techniques to develop proficiency in mental visualization
and grounding.

3.2 Robot tutoring for reading skills

Figure 1: A mockup image of the tablet inter-
face for the interactive robot. Students will be
tasked with choosing and arranging the provided
images to answer the prompt posed by the robot
partner.

Skill assessment. The system will begin the task starting from its
ground truth: a grade-level-appropriate text passage annotated for
content and semantic role. From this annotated data, the system will
produce an image response (see figure) for each associated compre-
hension prompt question. The student, given this text and a prompt
question, will create their own response using a touch interface on
a connected tablet computer. The tutoring robot will then be able to
compare a vectorized representation of this response with its own,
both to assess its correctness and to identify how the student might
have come to a particular incorrect response. The benefit of this setup
is that it allows us to assess abstract reading skills in as concrete a
way as possible, while allowing for the system to model the incorrect
"rules" a student might be using that is resulting in a wrong answer.
Understanding these hidden "rules" will allow the model to make
more informed decisions about the next steps that should be taken,
given a particular incorrect response. The goal behind prompting
an image response is to reinforce a correct grounding of abstract
comprehension techniques in visual and tactile experiences.

Knowledge tracing. Our approach to skill modelling will be based on Bayesian Knowledge Tracing (BKT), a
common approach among robot tutoring implementations. Although standard BKT implementations typically use
separate networks for each skill, we propose using a a single comprehensive dynamic Bayesian network to represent
beliefs over all skill levels. Our reasoning for this is that reading comprehension skills as we hope to characterize them
are highly inter-dependent. This comprehensive implementation would also allow for reasoning over which order skills
may be learned best. Each skill will have an associated latent variable S, representing the skill belief in one of 4-5
bins describing relative mastery (the exact amount of bins will likely depend on the skill and the associated practice
texts available). Common incorrect "rules" (e.g. assuming the first sentence of a paragraph is always the main idea, or
that the first character mentioned is the main character) that students may use will form additional hidden nodes that
have their own associated emission probabilities. These emission probabilities can be assessed by the system using its
response production rules.

Selecting next example. The system should aim to present examples that will maximally clarify the robot’s belief of
the student’s skill state – as well as maximally help the student understand the core strategies of reading comprehension
through grounded examples. For this reason, the system will select the next action using a maximum information gain
(MIG) approach over the associated skill belief states.
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3.3 Embodied implementation

In order to make the engagement with the robot social in nature, we plan to replicate (or approximate) with the robot
the social feedback behaviors most frequently identified in educator feedback [17]: eye contact, joint attention, and
nodding. The robot will be programmed to execute these behaviors consistently when giving instructions, prompts, or
feedback. An ideal embodied agent for this task would be able to perform all of these behaviors in addition to some
other social or motor output, such as smiling or gesturing. Based on these criteria, research robots such as the Jibo, Nao,
or DarwinOP [21, 22, 23] would be good candidates for the hardware implementation of our system.

4 Evaluation

4.1 Interaction Structure

The evaluation of this system will take place following
this basic protocol (after [17] and other similar HRI user
studies):

1. Opening: The interaction should begin with an
introduction for the student to the robot and its
basic capabilities.

2. Game Setup: The basic structure of the read-
ing skills activity, along with the tablet interface,
should be explained. The student will be able to
ask clarifying questions.

3. Test Run: A test run of the prompt and response
interaction will be conducted to ensure the in-
structions and interface can be understood.

4. Practice: The main reading skills practice activ-
ity can now begin, and be run for roughly 3-4
rounds. Each response from the student is fol-
lowed by spoken verbal feedback from the robot
tutor, followed by a chance to retry if appropriate.

5. Closing: The interaction will end as positively
as possible; the robot can thank the student for
participating and give praise for practice they put
into developing their skills.

4.2 Data Collection

The data to be collected from this evaluation will include
the following:

• Performance data: The system will store perfor-
mance over the interaction tasks for each student.

• Pre- and post-test data: Prior to the experimen-
tal interaction, students will take a brief pre-test
evaluating their mastery of the skills practiced in
the tutoring interaction. The same (or a very simi-
lar) test will be administered 48-72 hours after the
experimental interaction. This is to test both the
effectiveness and the retention of the practiced
skills.

• Robot perception survey results: Immediately
following the the interaction, students will be
asked to complete the Robotic Social Attributes
Scale [24] with the goal of evaluating students’
perceptions of the robots’ warmth, competence,
and associated discomfort.

• Backchanneling, speech, and social gestures:
Any nods, smiles, gestures, or speech directed
towards the robot will be recorded based on col-
lected video data.

5 Next Steps and Conclusions

We hope to make significant progress on this system before the end of the current academic year, with a rough goal of a
working implementation of our interface, automated assessment, and skill tracing systems within the next three to four
months. We believe that this system and its evaluation will forward the field of robot tutoring by bringing it into a new
domain, with new challenges to face in creating engaging and effective pedagogical interactions. As such, through
our implementation we will be tackling the difficulty of taking the relatively abstract skills of reading comprehension
and grounding them in a social and computational framework – a challenge that, perhaps ironically, mirrors the very
challenge students take on in learning these skills. Through this work we aim to open the door to future investigation of
interactive paradigms and technical approaches that can be used to develop the vital skills of reading comprehension.
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