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ABSTRACT
This thesis summary presents research focused on incorporating
high-level abstract behavioral requirements, called ‘conceptual
constraints’, into the modeling processes of robot Learning from
Demonstration (LfD) techniques. This idea is realized via an LfD
algorithm called Concept Constrained Learning from Demonstration.
This algorithm encodes motion planning constraints as temporally
associated logical formulae of Boolean operators that enforce high-
level constraints over portions of the robot’s motion plan during
learned skill execution. This results in more easily trained, more
robust, and safer learned skills. Current work focuses on automat-
ing constraint discovery, introducing conceptual constraints into
human-aware motion planning algorithms, and expanding upon
trajectory alignment techniques for LfD. Future work will focus on
how concept constrained algorithms and models are best incorpo-
rated into effective interfaces for end-users.

CCS CONCEPTS
• Computing methodologies → Learning from demonstra-
tions; Robotic planning; • Computer systems organization →
Robotic autonomy; External interfaces for robotics.
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1 INTRODUCTION
Modern industrial robots predominantly exist in the realm of large-
scale processes; those that are highly repetitive, precise, and rel-
atively unchanging [4]. A blossoming niche of robotics research
called Human-Robot Interaction focuses on robots designed or pro-
grammed to work with human counterparts [3] and may extend
the benefits enjoyed by large-scale industrial automation to more
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Figure 1: A user teaching a robot a task via kinesthetic learning.

dynamic small-scale industries. However, human-robot collabora-
tion presents a number of challenges not often present in industrial
settings: safety in shared workspaces, rapidly changing task re-
quirements, decision-making, and adhering to human expectations
of behavior. Recent advances in AI and robotics provide the means
to overcome such challenges, inviting a new era of more capable,
adaptable, and collaborative robots that expands automation into
industries previously inaccessible to automation. As such, the thesis
work summarized herein focuses on providing human users the
means to easily train a collaborative robot to execute dynamic skills
using robotic Learning from Demonstration (LfD) techniques while
adhering to important behavioral restrictions.

2 PRIORWORK
Concept Constrained LfD. The underlying motivation for this

thesis research is the idea that incorporating abstract behavioral re-
strictions into robotic LfD methods might encourage an awareness
of safety requirements and increase the learning efficiency of the
system [11]. LfD comprises techniques that enable non-expert users
with no programming knowledge to teach a robot how to perform
a task [3]. Low-level data (e.g. configuration space) traditionally
used by these techniques poorly captures important factors and
abstract concepts essential to successful skill learning [5, 7, 13].
A robotic learning system must possess awareness of high-level
considerations to truly ‘learn’ a skill. For example, when teaching
a robot how to carry a cup of coffee, low-level demonstration data
will not adequately inform the system that the cup must remain
upright if it contains liquid.

An algorithm presented in [12] called Concept Constrained
Learning from Demonstration (CC-LfD) introduces ‘conceptual
constraints’ to represent abstract restrictions on the behavior of
the robot (e.g. keeping a cup of coffee upright). These constraints
are encoded as Boolean operators that evaluate whether a given
environment state (e.g. c-space, relative distances, and sensor data)
satisfies the high-level abstract idea it represents. By augmenting
low-level robot state data with high-level abstract information a

Pioneers Workshop  HRI ’20 Companion, March 23–26, 2020, Cambridge, United Kingdom

588

https://doi.org/10.1145/3371382.3377428
https://doi.org/10.1145/3371382.3377428


learned model will much more closely resemble the ground truth
representation of a task or skill.

CC-LfD enables users to temporally assign constraints during
demonstration. These constraints are incorporated into a technique
called Keyframe LfD [1, 2] where data points of temporally aligned
demonstration trajectories are clustered into sequential groups
across demonstrations. Distributions learned using the data within
each cluster form keyframe models. These models are sequentially
sampled for waypoints that the robot follows to perform a skill. In
CC-LfD, constraints across demonstrations are combined during
alignment to create disjunctive normal form formulae, which are
assigned to temporally appropriate keyframes. Waypoints gener-
ated from the keyframe models pass through a rejection sampling
filter where each point is evaluated using the keyframe’s constraint
formula. This ensures the robot follows constraint-compliant way-
points. As a consequence, robotic learning systems employing CC-
LfD require far fewer demonstrations than standard Keyframe LfD
to produce robust learned skills [12]. For example, in a cup pouring
task, when given three demonstration trajectories that poorly per-
form the skill, one additional constraint-annotated demonstration
resulted in a high level of objective skill performance. Without
the constraint annotations, many more ‘gold’ demonstrations were
required to achieve improvement in skill performance [12].

3 CURRENTWORK
Autonomous Concept Constrained LfD. CC-LfD enables users to

communicate constraints over a demonstrated skill, but the burden
that constraint assignment places on the user during demonstra-
tion can be prohibitive. While conceptual constraints can capture
very high-level information, they also easily capture low-level con-
straints such as orientation and position constraints [11]. For a given
skill, these types of constraints (such as object-object relative posi-
tion) can be numerous thereby placing a significant cognitive load
on a user as they must maintain awareness of all constraints. With
this in mind, Autonomous Concept Constrained LfD (ACC-LfD)
seeks to automate the currently entirely human-driven selection
and annotation of constraints while retaining the benefits of CC-
LfD. The motivation is to automate low-level constraint assignment,
freeing the user to focus on assigning the most abstract conceptual
constraints that might be very difficult or impossible to learn.

Inspired by the Transition State Clustering (TSC) algorithm [10],
ACC-LfD uses a combination of Variational Gaussian Mixture Mod-
els (VGMM) to cluster keyframes and constraint-specific heuristics
to parameterize conceptual constraints. Similar to the TSC algo-
rithm, a VGMM clusters keyframes based on common informa-
tion contained within the demonstration data. Using a conceptual
constraint that restricts the orientation of a cup as an example, a
VGMM might generate two clusters representative of a pouring
task: an upright orientation cluster and a pouring orientation clus-
ter. Heuristics for this orientation constraint could be the ‘average’
orientation and angle of deviation from that average, calculated
using the data points within each cluster. This average and the
angle of deviation would thus populate the constraint’s parameters
to evaluate keyframe sample points for the orientation constraint.

Concept Constrained Motion Planning. Both CC-LfD and ACC-
LfD do not consider conceptual constraints when relying on motion

planning algorithms to traverse between waypoints. This forces
both algorithms to require more tightly spaced keyframing than
necessary in order to avoid constraint violation during interme-
diate poses. One way to address this problem is by incorporating
conceptual constraints into existing offline and online motion plan-
ning algorithms. A key challenge of this work is that constrained
planning often must occur in a higher-dimensional space than
conventional fast configuration-space planning allows. Offline sam-
pling based motion planners (e.g. RRT*, KPIECE) [9, 15] require
abstract constraints to have a geometric representation in this space,
or be integrated into a cost function that evaluates the generated
local plans for constraint compliance. Local plans are the small
incremental movements of joints that the robot conducts during
the execution of a chosen automated motion plan. Similarly, this
cost function could be used to scale the first and second order vector
fields generated over the state space employed by Dynamic Motion
Primitive algorithms, such as the end-effector space [8].

Robot Trajectory Alignment. Successful keyframe-based LfD tech-
niques depend upon adequate alignment of demonstration trajec-
tory data. Many keyframe techniques rely on a prominent time-
series alignment algorithm called Dynamic Time Warping (DTW)
[14]. This algorithm produces an alignment of indices and overall
distance/cost between two time series. For the purposes of Keyframe
LfD, this alignment step provides a crucial linkage between the data
points in one demonstration trajectory to the data points in all the
other trajectories. Violating the underlying assumption that clus-
tered data used to model a keyframe represents the same aspect
of a skill may result in a poorly representative model. Much of
the LfD literature does not consider the pros and cons of different
approaches to DTW [1, 2, 6, 16]: alignment on different state spaces
other than configuration or end-effector space; combining DTW
with other clustering approaches such as k-nearest neighbors tech-
niques or mixture model techniques. Current work of this thesis
is exploring how these considerations might ultimately produce
better representative keyframe models and how they might en-
able learned models to account for multi-directional demonstration
paths that accomplish the same task.

4 FUTUREWORK
While concept constrained algorithms and motion planning might
provide effectivemeans to inject abstract information into LfDmeth-
ods, the process of injection must be considered. Designing more
sophisticated interfaces that provide adaptable and efficient means
of communicating constraints constitutes the final research effort of
this thesis work prior to the completion of a dissertation. This future
research will investigate methods to visualize constraints via aug-
mented reality that are intuitive to the user. Such visual interfaces
might enable a user to edit the parameterization of the encoded
constraints. For example, the user might edit what is considered an
allowed orientation for a cup carrying task. These interfaces will
be evaluated for efficacy with human-subjects studies that explore
both the objective performance increases in robotic skill execution
and the subjective burden placed upon human users.
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