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Human-autonomy teaming in complex environments continues to evolve with technological

innovations like mixed reality and rapidly improving large language models. With this evolution

comes a need for increased safety measures and better ways for humans to learn and understand

these systems. The work presented in this dissertation aims to address questions about safety,

appropriate trust, and appropriate use of autonomy by and for humans. I begin with an overview of

how mixed reality, and mainly augmented reality, is used for human-robot collaboration. I then

explore how we might use augmented reality to promote safety and compliance in a shared space

environment with humans and robots. This leads to the question of how we can actively warn

humans about failures of autonomous chatbots. And finally I investigate the use of iteratively

adding latent human knowledge to an autonomous robot’s trajectory optimization as a way of

improving both learning and mission outcomes. Ultimately I show that humans have a propensity

to dangerously overtrust robots and other forms of autonomy, however we can mitigate this bias

with certain design considerations including iteration and transparency.
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Chapter 1

Introduction

1.1 Motivation

As the prevalence of human-autonomy teams continues to increase, so do the potential

benefits as well as the risks. These autonomous systems range from physical robots to automated

decision-making systems to chatbots and everything between. However, these systems are frequently

confusing, misleading, or mysterious, leading to misuse, overtrust, and failure to achieve the team

objectives.

In 1951 the famous Fitts list [1] claimed that humans are better at certain activities while

machines are better at others (often referred to as “MABA-MABA” for “men are better at/machines

are better at” or “HABA-MABA” for “humans”). While this remains true to an extent, the lines

are rapidly becoming blurred and crossed. Furthermore, much of the current HRI, HCI, and AI

literature could form a convincing argument that the combination of humans and “machines” (or

autonomy in general, whether embodied in a robot or not) can have a stronger impact than just the

sum of their parts. Measures of human-autonomy team fluency [2] can elucidate and quantify that

combination. However, key requirements for such fluency include safety, understanding, situational

awareness, transparency, and explainability.

While physical robots, computer-based chatbots, and other autonomous systems inhabit

different physical spaces in our world, the dangers and benefits of both have significant overlap. The

work presented in the pages that follow seeks to clarify and explain autonomous systems for human

teaming. It also aims to uncover insights that can be used to directly inform designers and users of
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these systems.

1.2 Thesis Statement

With the work presented in this thesis, I surface insights about human behavior when operating

with and around autonomous systems, and I show that there are specific design principles by which

human-autonomy teaming systems can intentionally mitigate harmful human assumptions and

behaviours, achieve increased human understanding, and improve overall team outcomes.

1.3 Overview

This thesis begins with an in-depth discussion of the use of augmented reality and some

other forms of extended reality for human-robot collaboration in Chapter 2. We explore how

these technologies have been developed over the past few decades and different uses for them with

human-robot teams. This literature review led me to ask whether one can use this rapidly expanding

innovation to help keep people safe in collocated situations with robots.

In the first study that I present in Chapter 3, we develop a system that places a human and

an autonomous robotic quadcopter in a shared space environment [3]. Equipped with an augmented

reality head-mounted display, the human can communicate with the robotic system regarding

ownership of the space in a warehouse scenario. We learn that people sometimes fail to comply

with instructions given by an autonomous system, even in this potentially dangerous situation with

a close-proximity quadcopter. The results of this study begged the question of whether we can

convince people to proceed with more caution when given explicit warnings.

To test this question, in Chapter 4 we designed chatbots driven by large language models [4].

One chatbot was intended to support participants writing a short essay and another chatbot was

developed as a resource for a bridge design task. We then embedded false information into some of

the chatbot responses and equipped both chatbots with specific kinds of warnings. Through this

study we learned that people largely disregard any explicit warnings in chatbots, even when those

warnings are shown in a variety of ways – including ways that are commonly used in chatbots today.
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Still in search of an appropriate method for appropriately mediating humans’ interactions

with autonomous systems, in Chapter 5 we asked how we could compel people collaborating with

autonomous systems to proceed slowly and deliberately [5]. To test this, we compared outcomes

between an interface that allowed a human in the loop to provide latent knowledge to a trajectory

optimization iteratively and an interface that required all latent human knowledge in a single

iteration. We learned that an iterative affordance produces better outcomes for the system, the

mission, and the human learner, supporting the user in a similar way to scaffolding in learning.

I conclude in Chapter 6 by examining how can we encourage responsible use of the technologies

explored in this dissertation. I set some concrete directions for future work and frame some

recommendations for public policymakers.



Chapter 2

Extended Reality for Human-Robot Collaboration

2.1 Introduction

Augmented reality (AR) has been explored as a tool for human-robot collaboration (HRC)

since 1993 in [6], and research related to AR for HRC has expanded further with the deployment

of the Magic Leap 1 [7] and Microsoft HoloLens 2 [8], arguably the most advanced head-mounted

displays for AR on the market. In 2008, Green, Billinghurst, Chen, et al. [9] presented a literature

review of AR for human-robot collaboration, and in the years that have passed since then, AR

for HRC has evolved immensely. The ACM/IEEE International Conference on Human-Robot

Interaction hosts annual workshops on Virtual, Augmented, and Mixed Reality for Human-Robot

Interaction (VAM-HRI) [10]–[14], further evidence that these technologies of augmented reality and

robotics are becoming increasingly used together. Virtual, augmented, and mixed reality are often

classified together as “Extended Reality” or XR. This survey is largely intended to be a continuation

and expansion of the review begun by Green, Billinghurst, Chen, et al. [9].

Milgram, Zhai, Drascic, et al. [6] define augmented reality as an overlay of virtual graphics

and virtual objects within the real world, and this is the basic definition used throughout this paper.

Green et al. add that “AR will allow the human and robot to ground their mutual understanding

and intentions through the visual channel affording a person the ability to see what a robot sees” [9].

Whether the real world is viewed unobstructed, partially obstructed, or through an intermediate

display, the AR features are placed over these real world images. Technologies that enable augmented

reality include mobile devices such as head-mounted displays or handheld tablets, projection-based



5

displays, and static screen-based displays, and are detailed in Section 2.2. This paper aims to focus

on the topics of augmented reality as applied specifically to human-robot collaboration, and thus

excludes related but different topics such as virtual reality, augmented virtuality, or augmented

reality for purposes other than HRC. Because human-robot collaboration occurs across all types of

robots, we include examples of this variety within every section.

We conducted this literature review by searching the proceedings of highly-refereed robotics,

human-robot interaction, and mixed-reality conferences, as well as associated journals. Conference

proceedings and journals included the ACM/IEEE International Conference on Human-Robot

Interaction (HRI), Robotics: Science and Systems (RSS), International Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS), IEEE International Conference on Robot and Human

Interactive Communication (ROMAN), IEEE International Conference on Intelligent Robots and

Systems (IROS), IEEE International Conference on Robotics and Automation (ICRA), ACM/IEEE

Virtual Reality International Conference (IEEE VR), IEEE International Conference on Control,

Automation, and Robotics (ICCAR), IEEE International Symposium on Safety, Security, and

Rescue Robotics (SSRR), IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA), CIRP Annals: Journal of the International Academy for Production Engi-

neering, IEEE International Conference on Mechatronics and Machine Vision in Practice (M2VIP),

IISE Transactions, Transactions on HRI, Frontiers in Robotics and AI, Frontiers in VR, and ICAR.

Keywords utilized for the search were “augmented reality” and “mixed reality”. If the conference or

journal was not robotics focused, the keyword “robot” was also used. We recognize that this method

does not elicit a fully comprehensive review of all literature on HRC via AR, however we believe

that our sample size is large enough to be representative of where the field has been and is heading.

We then examined the literature around augmented reality for human-robot collaboration,

using the following questions to determine how to organize the discussion for each article:

• Is the contribution primarily about helping to program, create, and/or understand a robot

and/or system?
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• Is the contribution primarily about improving the collaborative aspects of a human-robot

interaction?

In many cases there is significant overlap in these contributions and thus multiple valid possible

organizations of these works. For this article we use the more significant area of contribution to

situate the research with respect to other relevant literature.

First we begin by exploring the many different manifestations of AR as it has been used

for HRC since 2008 (Section 2.2). We then highlight the literature as it represents the categories

defined above in Sections 2.3 and 2.4. Section 2.5 reviews a representative selection of the evaluation

strategies and methods utilized in the related studies. Section XXXXX provides a potential method

of classifying XR for HRI, as proposed in [15]. And we conclude with a vision for where research

on AR for HRC might be most useful in the future, including in space exploration applications[16]

(Section 2.7).
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Contributions and Categorizations of Included Papers

Modalities

Mobile Devices: Head-Mounted Display [17]–[34]

Mobile Devices: Handheld Display [35]–[43]

Projection-based Display [44]–[47]

Static Screen-based Display [48]–[51]

Alternate Interfaces [52]–[55]

AR Combinations and Comparisons [46], [56]–[59]

Creating and Understanding the System

Intent Communication [43], [47], [57], [60]–[66]

Path and Motion Visualization and Programming [18], [21], [32], [35]–[37], [39], [44], [46],

[51], [52], [58], [62], [67]–[81]

Adding Markers to the Environment [21], [35], [40], [51], [82]–[84]

Manufacturing and Assembly [24], [25], [38], [44], [46], [67], [73], [84]–

[86]

Improving the Collaboration

AR for Teleoperation [20], [23], [25], [29], [33], [48], [50], [56],

[87]–[90]

Pick-and-Place [28], [40], [51], [57], [58], [91]

Search and Rescue [31], [55], [62], [69], [92]–[96]

Medical [30], [34], [48], [97]–[101]

Space [102], [103]

Safety and Ownership of Space [3], [40], [41], [47], [73], [86]

Other Applications [104]–[108]

Table 2.1: This table summarizes the categories outlined in this literature review and lists the

articles associated with each category. Many papers are cited multiple times.
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2.2 Reality Augmented in Many Forms

Augmented reality can manifest in different forms, as some modalities are better suited for

certain uses than others, and AR has evolved significantly in the last decade. Head-mounted displays

are some of the most commonly considered AR devices, frequently used in cases where the person

is collocated with a robot and needs the use of both of their hands. Mobile phones and tablets

offer a different experience with augmenting the real world, especially useful when those devices’

other capabilities or apps might be utilized or to conduct smaller-scale interactions that do not

necessitate an immersive view. Projection-based displays can be ideal for tabletop collaborative

work or in consistent manufacturing environments, while static screen displays might best serve

remotely located users. Below we discuss various modalities of AR, their uses, and how they have

changed over time, particularly as applied to human-robot collaboration. We do this by presenting

a list of works separated by AR modality due to the different interactions enabled and required. We

also acknowledge that it is important to recognize the degree of abstraction of the robot platform

communication as coming from a separate device.

2.2.1 Mobile Devices: Head-Mounted Display

Head-mounted displays (HMDs) for AR have increased in popularity for use in HRC as the

technology has matured. Furthermore, since 2009 the research has evolved from showing basic

prototypes and designs for using HMDs, as in Chestnutt, Nishiwaki, Kuffner, et al. [17], to more

recently providing detailed design frameworks [18] and conducting extensive user studies with HMDs

[19], [20], [27], [34].

Generally HMDs are used for in situ interactions with robots, whether aerial, tabletop, or

ground-based. This way the virtual images (objects and/or information) can be placed over the

physical objects within the environment that the user is currently experiencing. Depending on the

maturity of the technology and the desired implementation virtual images can be either egocentric

or exocentric. A helpful way to understand the difference between these two display types is to
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imagine a path being visualized. An exocentric display provides an external perspective of the

path, such as a map, whereas an egocentric display provides a perspective from the point of view

of a person actually traveling along that path. In the remainder of this subsection, we highlight

literature that exemplifies the evolution of HMDs over time, while also indicating the multitude of

ways in which they can be used to facilitate HRC.

In Chestnutt, Nishiwaki, Kuffner, et al. [17], the human user draws a guide path for a

humanoid robot in the HMD, and the specific left and right footsteps are then shown to the user in

their HMD such that they can anticipate where the robot will step. The robot plans its specific

steps (shown as virtual footprints) based on the general path provided by the human (shown as a

line drawing). In this paper written in 2009, all of these technologies are obviously still relatively

nascent, a full user study is not conducted, and some alternatives to drawing the robot path are

considered, such as joystick control. We see this change with modern research showing an increased

expectation of rigor, a positive indicator of the field maturing.

Also in 2009, Green, Chase, Chen, et al. [21] utilize an HMD to allow a user to view virtual

obstacles and plan a path for a simulated robot in AR. The HMD device used in the study, the

eMagin Z800, was wired to a computer, and the work was done in simulation. This simulation-

based work is further evidence of earlier studies finding ways to conduct AR-HRC research with

still-maturing platforms.

Four years later in 2013, Oyama, Shiroma, Niwa, et al. [22] debut a “slenderized HMD”to

provide a teleoperator the perspective of the robot. The device utilizes the same base HMD as in

Green, Chase, Chen, et al. [21], but then also augments it with stereo cameras and a wide field of

view camera. Similarly, the HMD in Krückel, Nolden, Ferrein, et al. [23] allows for teleoperation of

an unmanned guided vehicle, but in this case the operator’s view is augmented with an artificial

horizon indicator and heading information. Furthermore, the operator can look around the entire

environment, as they are effectively immersed in it with the use of the Oculus Rift HMD, a device

intended for virtual reality more than augmented reality. This begs the question of what actually

“counts” as AR; in the cases of Oyama, Shiroma, Niwa, et al. [22] and Krückel, Nolden, Ferrein, et
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al. [23], the human’s reality is not actually being augmented, they are instead being placed virtually

into the environment of the robot. We claim that it is in fact augmented reality, since it is not a

virtual environment that is being augmented. Despite the human not existing in the same location

as the robot that they are controlling, a real environment is being augmented with virtual images,

all of which the human user is able to see and affect.

The Microsoft HoloLens was introduced in 2016, facilitating a flurry of new research on

AR for HRC using HMDs. Readers may note that the HoloLens is referenced throughout the

literature mentioned in this paper, as it is relatively straightforward to work with and represents the

state-of-the-art in augmented reality technology for head-mounted devices. The HoloLens 1 places

images as holograms, or virtual images overlaid on the real world, in the wearer’s field of view. This

capability along with the incorporation of sensors allowing for detection of gaze, voice, and gesture

made the HoloLens a revolutionary hardware development. In late 2019, the second version was

released, HoloLens 2, with additional features and improvements including a more comfortable fit

and eye tracking. The HoloLens has been mass produced for approximately 5 years now, making it

widely available for research.

In Guhl, Tung, and Kruger [24], Guhl et al. provide a basic architecture for utilizing the

HoloLens for industrial applications. Using tools such as Unity and Vuforia, robots can be modeled

on the HoloLens, safety planes can be rendered to keep the human and robot safely separate, and

sound can be played. These concepts and capabilities are suggested in hopes of allowing users to

foresee robots’ motions and thereby productively interfere.

Technology in Yew, Ong, and Nee [25] takes the AR user’s environment and “transforms” it

into the remote environment of the teleoperated robot. Real objects in the user’s environment are

combined with virtual objects in AR, such as the robot and the objects with which it is interacting,

thereby reconstructing the actual site of the robot for the teleoperator.

A robotic wheelchair user in Zolotas, Elsdon, and Demiris [26] is outfitted with a Microsoft

HoloLens. A rear-view display is provided, the future paths of the wheelchair are projected onto

the floor, possible obstacle collisions are highlighted, and vector arrows (showing both direction
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and magnitude) change with the user-provided joystick velocity commands. One set of findings

from this study was its deeper understanding of users’ comfort with AR feedback. They also

further confirmed the restrictive field of view of the HoloLens and cited it as a limiting factor in

the usefulness of the AR. Work in Zolotas and Demiris [19] then builds on Zolotas, Elsdon, and

Demiris [26] by adding “Explainable Shared Control” to the HMD. In this way the researchers aim

to make the robotic wheelchair’s reasoning more transparent to the user. The AR is classified as

“environmental” (exocentric) or “embodied” (egocentric), depending on whether it is fixed to the

environment or fixed to the user or robot. In another recent robotic wheelchair study using the

HoloLens Chacón-Quesada and Demiris [27] test different types of icons and display modes. The

user can control the wheelchair from within the AR interface, and a choice of movement options is

shown to the user in their field of view.

The HoloLens was also used to program a UR5 robot arm to conduct pick and place tasks in

Rudorfer, Guhl, Hoffmann, et al. [28]. The platform uses the built-in recognized HoloLens gestures

to interact with the 6 degree of freedom robot via a drag-and-drop type gesture. The goal of this

system is to enable a user to command a robot to perform pick-and-place actions, moving Lego

blocks from one location to another. In Puljiz, Stöhr, Riesterer, et al. [29], a feasibility study

explores a method of generating the robotic arm as a manipulable hologram within the HoloLens,

using a registration algorithm and the built-in gesture recognition. The virtual robot is overlaid on

the physical robot, with the goal of teleoperation. Either the end-effector can be manipulated, or

the linkages can be moved to create the desired positions. In practice, issues with segmentation

resulted in the hand tracking not performing well on dark backgrounds and when close to objects.

The study conducted in Elsdon and Demiris [30] uses a HoloLens in conjunction with an

“actuated spray robot” for application of specific doses of topical medication. The amount of

medication dispensed is shown to the user only via AR, rendering an otherwise unobservable result

for the user.

Reardon, Lee, and Fink [31] show how AR can aid a human who is conducting search

efforts collaboratively with a mobile ground robot. In this case the robot is providing location
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and navigation information to the human teammate via AR. The primary technical contribution

from this study is the alignment of the frames of the human and the robot. This study also uses

AR markers for testing of targets and navigation. The goal of Kästner and Lambrecht [32] is to

evaluate the HoloLens’s performance under 5 different visualization modes: without any sensor data

visualization; with laser scan visualization; with environment map visualization; with laser scan

and environment map visualization; and with laser scan, environment, and navigation visualization.

The experiment uses AR to present a visual map of the space, set goal locations for the ground

robot, and visualize the robot path along the floor. The main limitations of the technology are from

constant visualization of real-time data, especially the laser scan data for position and obstacle

tracking.

Hedayati, Walker, and Szafir [33] explore three different design methodologies, which all

prove to be improvements over the baseline. A HoloLens is again utilized as the ARHMD platform,

with three classifications for interface designs: augmenting the environment (which they call the

Frustrum design), augmenting the robot (the Callout design), or augmenting the user interface (the

Peripherals design). These design frameworks work quite well for the situations where the robot

is separate from the human and they are collocated in the environment, but may not apply as

well in all situations, for example when the robot is a wheelchair that the user is operating from a

first-person perspective. In related work, Walker, Hedayati, Lee, et al. [18] also utilizes this design

framework (augmenting the environment, augmenting the robot, augmenting the user interface),

and showcases four reference designs (NavPoints, Arrow, Gaze, Utilities) for designing AR for HRC.

Limitations and drawbacks of head-mounted displays are made clear in Qian, Deguet, Wang,

et al. [34], where a HoloLens is used to assist the first assistant during robotic-assisted surgery. The

weight of the device as well as its limited field of view are both stated as problematic in participant

interviews. The intent of AR in this case was to be able to (virtually) view instruments inside the

patient and to provide real-time stereo endoscopic video in a convenient location.

Similarly to Qian, Deguet, Wang, et al. [34], Walker, Hedayati, and Szafir [20] also uses a

HoloLens to display a hologram robot (“virtual surrogate”) that is manipulated for teleoperation.
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However, in this study the user is collocated with the robot, which is an aerial quadcopter robot

instead of a tabletop robotic arm, and a handheld Xbox controller instead of hand gesture recognition

is the mode of teleoperation. Two designs are tested: one which behaves like a typically teleoperated

robot with the physical quadcopter immediately responding to the virtual surrogate’s movements,

and another where the virtual surrogate is used to set waypoints in AR which the physical quadcopter

can be signaled to begin at any time. These are compared against a purely teleoperated robot,

without any virtual surrogate. In the user study, both task completion time and response time are

faster in the experimental conditions, and participants also preferred the experimental designs over

direct teleoperation.

2.2.2 Mobile Devices: Handheld Display

Augmented reality that uses a handheld mobile device display, such as a tablet or smartphone,

is a frequent implementation of AR. These kinds of devices are ubiquitous, and creating an app

that can be deployed to almost anyone is relatively straightforward, simple, and inexpensive. Since

the release of the iPhone in 2007, mobile devices like it are increasingly at people’s fingertips, and

there is already a dependable baseline level of familiarity with how to interact with AR in this form.

As mentioned in the introductory paragraph to this section, handheld mobile displays provide for

an AR experience that is non-immersive as compared to the HMD; furthermore, handheld devices

are typically more affordable ways to implement AR for HRC.

The AR format in Fung, Hashimoto, Inami, et al. [35] uses the Sony Vaio ultra mobile PC, a

handheld touchscreen device that recognizes fiducial markers (special tags) in the space to provide

on-screen information to the user, enabling them to program a robot to carry out a limited set of

tasks. The user takes photographs with the handheld device, enabling recognition of objects and

locations in the photograph, and then actions are allowed to be programmed using these recognized

objects and locations. In this way a robot can be programmed to operate simple home appliances,

such as a hot water kettle.

The Samsung Galaxy S II smartphone is used in Lambrecht and Krüger [36], as the mobile
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device on which to display AR, with the goal being intuitive industrial robot programming. The

mobile device displays virtual objects relevant to the robot’s motions, and the user can interact

using hand gestures. Information from both an external 3D motion tracking system and the 2D

camera on the mobile device are combined to interpret the hand gestures.

That same year Bonardi, Blatter, Fink, et al. [37] present an iPad application for arranging

robotic movable furniture either in situ with AR (“Augmented/A”) or in virtual reality (“Virtual/V”).

Tables and chairs can be placed virtually into the actual environment, and different experimental

conditions either allowed the participant to move freely about the space with the iPad (“Dynamic/D”)

or required them to remain stationary with the iPad anchored in place (“Static/S”). Participants

were also tracked with the Kinect sensor. All subjects in this 2x2 study were provided time to

practice using the software on the iPad using the virtual, static condition, and then performed two

of the four conditions (SV, SA, DV, or DA). Participants preferred dynamic over static conditions

and performed better in the dynamic condition with respect to precision, and also expressed a

preference for augmented representation over virtual despite no observed performance differences.

The choice of an external mobile display for the interaction is notable here, as it allows the person

to manipulate objects on a tangible screen while moving around the environment with their field of

view unencumbered.

A Samsung Galaxy Tab 4 is used to compare the use of AR with traditional robot programming

in an industrial environment in Stadler, Kain, Giuliani, et al. [38]. The participant completes three

different tasks to program a Sphero 2.0 robot ball in either an AR or no-AR condition. In the AR

condition, “task-based support parameters” are provided, whereas these parameters are not given

in the no-AR condition. Workload measures are lower in the AR condition, while task completion

time increases, possibly due to the apparent desire for participants to be more accurate in the AR

condition, provided with more visibility to the task.

More industrial robot programming is explored with mobile screen AR in Hügle, Lambrecht,

and Krüger [39]. The user first moves around the space with a tablet, using pointing and arm

movements, while the 6-DOF robot arm remains stationary. Next the user validates robot poses
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and trajectories aided by the AR application, able to adjust the program as well as physically move

the robot. Finally the user leaves the area so that the robot can safely demonstrate its learned

movements. Gestures are recognized using the tablet’s camera, the user receives AR feedback on

the gesture interpretation, and a virtual robot is also displayed to demonstrate the current program.

The Apple iPad Pro is the mobile device of choice for Frank, Moorhead, and Kapila [40].

Fiducial markers are arranged on a table surrounding a humanoid robot with two 6-DOF arms.

Manipulable objects, also labeled with markers, must be moved around the table. Three different

interfaces, all using the iPad, are tested in a between subjects study. The three interfaces are a

Conventional Egocentric (to the robot) Interface, where users view the area from the perspective

of the robot’s on-board camera; a Conventional Exocentric Interface, which displays an overhead

camera view of the workspace; and an experimental Mobile Mixed-Reality Interface, which uses the

tablet’s rear-facing camera as the point of view. The reachable space can be highlighted virtually

on the tablet. Statistically, participants perform equally well with all interface modes. Because the

Egocentric Interface requires users to move around to gain perspective of the robot, this modality

is less preferred by participants than the other two modalities. Likewise, the Egocentric Interface

users also report higher workload. There is obvious variability among participants using the mobile

interface, possibly due to the variety of movements available to those users.

In Sprute, Tönnies, and König [41], a Google Tango tablet with an RGB-D camera is used to

define spaces that a mobile robot is allowed to occupy, using “virtual borders”. Holding the tablet,

a user moves around the space and chooses points in a specified plane. These points are displayed

on the screen along with the virtual borders which they define. This method is compared against

two baseline methods: visual (physical) markers and a laser pointer. Ultimately the results showed

that the tablet method produced similar accuracy as the baseline methods and resulted in a faster

teaching time.

In Chacko and Kapila [109], a Google Pixel XL allows a user to select an object and a goal

location, which are then shared with a 4-DOF tabletop robot manipulator with a 1-DOF gripper.

The mobile AR display features two buttons (one for setting the target and another for clearing),
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crosshairs to assist with locating a target, shading to denote reachable regions, and virtual objects

to indicate intended final placement. Different versions of the interface are provided to allow the

user to program either one pick-and-place object at a time or multiple objects together. Participants

rate the workload required for this task and interface as relatively low. Chacko and Kapila [42]

extend Chacko and Kapila [109] by expanding the types of objects to be manipulated, allowing for

two different grasping modes (vertical and horizontal), and adjusting the AR display accordingly.

The software developed in Rotsidis, Theodorou, Bryson, et al. [43] is intended to facilitate

trust between robots and users, using a mobile phone AR application to increase transparency. The

AR display has modes that show a ground robot’s decision-making capabilities in tree-like formats.

Subtrees can be expanded with a tap, and users can debug the program and access additional

information. This kind of transparency increases the likelihood that the robot is perceived as alive,

lively, and friendly by study participants.

As demonstrated by this chronological review of mobile device AR display, the uses are

incredibly diverse and allow for a variety of functionality and information provision.

2.2.3 Projection-based Display

Another commonly used mode of augmenting the real world for HRC is projection. Much of

the work in this area has occurred within the past 4 or 5 years, perhaps due to the maturation of

projection and motion capture technologies.

In 2016, work in Andersen, Bøgh, Moeslund, et al. [44] utilizes projection mapping to facilitate

autonomous robotic welding. An operator uses a Wii remote to control a cursor and communicate

with the robot. In the experiment, the projection is displayed on a mock-up of a shop wall. The

participant completes two separate tasks, one requiring them to correct a number of incorrect

locations for welding, and another to teach the welding task to the robot. The functionality of

the projection system was rated relatively highly by mostly novice participants, due in part to the

projection visualization of task information.

In a car door assembly task Kalpagam Ganesan, Rathore, Ross, et al. [45], projections are
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used to dynamically indicate various cues to human collaborators with robots. Object locations

are tracked with a vision-based system, and this enables projection mapping on top of the 3D

objects. Three modes of communication were tested: printed mode, in which subjects received

printed instructions; mobile display mode, in which subjects received a tablet with instructions;

and projection mode, providing just-in-time instructions via projection mapping with mixed reality

cues. Participants had to collaborate with a robot to complete the door assembly task. The amount

of time required to understand a subtask was lower in the projection mode than in the printed or

mobile display modes. Furthermore, the subjective questionnaire revealed higher fluency, clarity,

and feedback with the projection mode. All participants also favored the projection mode in this

within subjects test.

In another industrial application in Materna, Kapinus, Beran, et al. [46], a human subject

uses spatial augmented reality to program a robot to prepare parts for assembly. Projections are

displayed on a touch-enabled table that is also within reach of the robotic arms. Since all work

occurs on the table, the location of the projections in this same area is intended to increase focus

and situational awareness, improve use by novice users, and remove the need for other devices. The

tabletop system serves both as input for the robot and feedback for the human. Lists of instructions

and programs, dialog boxes, and images representing objects to be manipulated are all “widgets”

shown on the tabletop surface. Unfortunately, the affordances of the touch-capable table proved

to be lacking, and 5 of the 6 participants agreed with the statement, “Sometimes I did not know

what to do,” demonstrating once again that shortcomings in the tools can deeply affect the overall

experience.

Similar to Materna, Kapinus, Beran, et al. [46], in Bolano, Juelg, Roennau, et al. [47] a

tabletop projection system is also used. In this case, however, information is shown about robot

behavior and detected parts, with the goal of clarifying the task and the robot’s intent, and the

table is not touch-enabled, nor are any inputs solicited from the user. Without the hindrance of

a confusing touch interface as in Materna, Kapinus, Beran, et al. [46], the usefulness of tabletop

projection can be assessed. Because in this example the user is working concurrently with the robot
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rather than programming it, understanding intent and future movements is especially useful. If the

robot makes an unpredictable move, the human user can see with a glance the goal location and

immediately assess whether or not a collision is imminent.

2.2.4 Static Screen-based Display

A mode of AR display that has declined in popularity in recent years is that of a screen-based

display, generally placed on a desktop for viewing. This display is distinct from the mobile device

displays discussed earlier, as it cannot be moved with the user on the fly, nor is it generally equipped

with a mobile camera. Research involving static displays for HRC is largely for remote use purposes,

featuring an exocentric camera view and virtual overlays for the remote user. Here we highlight

some examples of these static displays for AR, though this modality has been less common in recent

years.

Work in 2009 used a screen-based display to facilitate dental drilling in Ito, Niwa, and Slocum

[48]. Virtual images were projected onto teeth to perform the drilling required to prepare them for a

crown. The path of the drill can be superimposed, and feedback shown on the screen. The machine

is teleoperated via joystick, and the AR system enables replication of the original operation.

In 2010, a remote operator is shown a live view of a robot arm with additional information on

top of and around the robot in view in Notheis, Milighetti, Hein, et al. [49]. Both virtual and real

cameras are enabled, with the virtual model showing the intended movement of the real robot. The

user can validate the movements via the screen prior to the action being taken in real life.

In proof-of-concept work done in 2012 in Domingues, Essabbah, Cheaib, et al. [50], the intent

is to provide users with a virtual scuba diving experience. While an underwater robot (ROV) was

teleoperated, a screen-based AR displays controls and the video feed from the ROV. The user can

choose whether to use the on-board ROV camera or the virtual ROV for controlling the robot.

A stationary touchscreen AR display is used in 2013 to allow users to teleoperate a ground-

based robot in another room by manipulating a 3D model on the screen in Hashimoto, Ishida, Inami,

et al. [51]. The user draws the robot path on the screen with their finger, and various cameras are
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provided to augment the user’s view, including a third-person view camera. Three movement modes

are tested with the touchscreen input: Movement After Touching (the robot does not move until

the person is no longer touching the screen), Movement During Touching (the robot moves as soon

as the user begins to manipulate the model but stops immediately when the screen is no longer

being touched and the model moves to the current location of the robot), and movement during and

after touching (the robot begins as in Movement During Touching, however when the user stops

touching the screen, the robot continues to the final model position). Only 12 participants were

involved in the study, which makes generalizations about the usefulness of each mode difficult, and

there were participants who preferred each of the three modes.

2.2.5 Alternate Interfaces

A survey of literature in AR for HRC would be deficient without the acknowledgement of the

development of various peripheral devices for interacting in augmented reality. Here we provide

examples of the diverse types of peripherals.

One example of a peripheral being used with AR is in Osaki, Kaneko, and Miwa [52], where

a projection-based AR is combined with a drawing tool peripheral to set a path for a mobile

ground-based robot. Additional commands and communication are provided by the drawing tool

including navigation by virtual string (as if it were a leash and the robot were a dog) and the use of

different colors to indicate stop or go.

To enable robot use by people with mobile disabilities, a “tongue drive system” (TDS) is

developed for use with an AR headset in Chu, Xu, Zhang, et al. [53]. Using tags and object

recognition, a user is able to perform pick-and-place and manipulation tasks faster with the TDS

than with manual Cartesian inputs from a keyboard.

One proposed concept, and an example of where this kind of technology might lead us in

the future, is an immersive suit for the elderly: the “StillSuit” in Oota, Murai, and Mochimaru

[54]. The main purpose of the robotic StillSuit is to enable interaction with the environment. Using

“Lucid Virtual/Augmented Reality,” the central nervous system and musculoskeletal system are
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modeled, providing the user with the sensations of performing a particular task.

In Gregory, Reardon, Lee, et al. [55], users perform gestures while wearing a Manus VR

gesture glove, capable of tracking each finger’s movement. While wearing a HoloLens, users provide

movement instructions to a ground-based robot via the gesture glove. A key insight learned in this

pilot study is that gestures should be chosen so that they can be easily formed by all users.

2.2.6 AR Combinations and Comparisons

Other themes in the literature included the comparison of different AR modalities via user

studies and the combining of modalities to achieve improved effects. These studies bear importance

for those who may be deciding whether to implement AR in different modalities or how to provide

AR insight to both an egocentric and an exocentric user simultaneously, thus related works are

shared below.

Augmented reality can be a combination of technologies, such as in Huy, Vietcheslav, and

Seet Gim Lee [56], which combines projections using a laser writer system (or spatial augmented

reality, SAR) with the Epson Moverio BT-200 AR Glass (an HMD) and a multimodal handheld

device prototyped for the study. The laser writer is mounted to a ground-based mobile robot to

provide directional feedback, the human can provide commands via the handheld device, and other

visual feedback can be provided via the HMD. The intent of testing both versions of AR (projection

and HMD) is for those cases where some of the communicated information may be sensitive, while

other information may be needed by all those in the vicinity of the robot for safety purposes.

Sibirtseva, Kontogiorgos, Nykvist, et al. [57] compare different AR methods where the

three conditions are HMD, projector, and a monitor. Participants claim that the HoloLens is more

engaging, possibly due to the mobility that an HMD allows, but generally prefer the projection-based

AR for a tabletop robot manipulator conducting a pick-and-place task because it was “natural,”

“easy to understand,” and “simple.”

Similar to Huy, Vietcheslav, and Seet Gim Lee [56], in Bambušek, Materna, Kapinus, et al.

[58] a HoloLens is combined with projection AR, so that an outsider can see what the HMD-wearer
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is doing. The study indicated a high task load for the HMD and confusion when both were used.

Ultimately the task completion time was faster with the HMD regardless of the high Task Load

Index rating. The unreliable touch-enabled table proved to be problematic, as seen in other studies

like Materna, Kapinus, Beran, et al. [46].

AR (and VR in this instance) have also been used as training tools for operation of a

conditionally autonomous vehicle in Sportillo, Paljic, and Ojeda [59]. In a between-subjects study,

three different training methods are tested: on-board video tutorial, AR training, and VR simulator.

In this wizard-of-oz study, all participants are able to take over in the appropriate situations within

the required time, regardless of their training method, but participants trained with AR or VR have

a better understanding of the procedure and better performance time.

2.3 Creating and Understanding the System

We encountered a large subset of literature that discussed the problems of allowing a user

or designer to better understand, create, or improve the human-robot collaborative system via

augmented reality. Below we discuss these in respective subsections based on the ways in which

they do so or their intended domain.

2.3.1 Intent Communication

Research highlighted in this subsection addresses the problem of communication of robot

intent to humans via AR. The following section, 2.3.2 Path and Motion Visualization, is related

to intent, but it is differentiated in that intent is not always path- or trajectory-based. A robot

might want to communicate an overall plan, a goal location, or a general intent so that the human

collaborator does not duplicate efforts, alter the environment, or put themselves in danger. Thus,

we share this section specifically dedicated to intent communication.

One key example of intention explanation is in Chakraborti, Sreedharan, Kulkarni, et al. [60],

where the “Augmented Workspace” is utilized both before and during task execution. The aim of

this work is to keep the human collaborator informed, increase the fluency of the collaboration,
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increase clarity of the plans (before and during task execution), and provide a common vocabulary.

Particularly notable is the Projection-Aware Planning Algorithm, where “the robot can trade-off the

ambiguity on its intentions with the cost of plans.” Similarly, algorithms for interpreting the scene

and establishing and updating the virtual borders to be shown to the HMD wearer are presented in

Sprute, Viertel, Tönnies, et al. [61].

The overarching goal of Reardon, Lee, Rogers, et al. [62] is to provide straightforward, bidi-

rectional communication between human and robot teammates. The human is provided information

to more clearly understand the robot’s intent and perception capabilities, while the robot is provided

information about the human that enables it to build a model. By enabling this bidirectional com-

munication, the authors seek to influence human behavior and increase efficiency of task completion.

The task at hand in this experiment is the cooperative exploration of an uninstrumented building.

The robot and human (wearing an AR HMD) are independently performing SLAM, and their frames

of reference must first be aligned with each other. Next the maps from both sources are composited.

Finally the robot’s information is provided to the human teammate visually, in their AR-HMD.

Information visually communicated to the human via the AR-HMD includes: the robot’s current

plan; the composite map, to facilitate understanding of the current state of the exploration task;

and other information to convey how the robot is evaluating future actions [62].

In cases where humans and industrial robots must work in close proximity, safety and trust

can be improved by indicating the robot’s intent to the human. For example, in Bolano, Juelg,

Roennau, et al. [47], a human collaborator works in a shared space on an assembly task. Using

projection-based AR, the user can immediately see whether a part is recognized by the system and

also be shown the current target, trajectory path, and/or swept volume of the robot, so that they

can safely move out of the way (or know that they are already working in a safe space), even if it

might appear as though the robot is moving towards them.

To aid in the disambiguation of human commands, Sibirtseva, Kontogiorgos, Nykvist, et al.

[57] present a system that involves natural language understanding, a vision/object recognition

module, combining these two for reference disambiguation, and the provision of both a visualization



23

in AR and an autonomous robot controller. After a pilot study to establish human language

preferences for the reference disambiguation visualization system, a relatively straightforward

pick-and-place task for different colors of blocks is established to compare three modalities of AR.

In a similar experiment, Williams, Bussing, Cabrol, et al. [63] performs a within-subjects

study to investigate how a robot can communicate intent to a human via AR images as deictic

gestures (such as circling an object in the user’s field of view), rather than using physical deictics

(such as pointing). The experimental results suggest design guidelines for “allocentric mixed reality

deictic gestures,” including the suggestion to use these gestures in contexts where language may

be difficult or impossible, or when the intended target may be perceived as outside the robot’s

perspective, and to use them in combination with language when the situation allows.

A key result of communicating robot intent is the calibration of a human user’s trust that

results from their mental model of the system and from an understanding of its capabilities and

limitations. This calibration of trust is one of the primary goals of Rotsidis, Theodorou, Bryson, et

al. [43]. Using a mobile phone-based AR, a tree-like display of the robot’s plans and priorities was

shown to a human for both transparency and for debugging.

Even more recently, [64] compared different two different AR robot gestures (a virtual robot

arm and a virtual arrow). Based on the robot’s deictic gesture, the participant chose the virtual

item that they believed the robot was indicating. While the arrow gesture elicited more efficient

responses, the virtual arm elicited higher likability and social presence scores for the robot. These

results carry various implications for intent communication, including an important choice between

likability and efficiency. Further, AR is shown in [65] to be a a promising technology for bi-directional

communication of intent and increased task efficiency through experiments that provide avenues for

both the human and the robot to communicate intent and desires. Other AR-enabled indication

methods that have been explored include a virtual robotic arm on a physical robot that points

to desired objects, as demonstrated in Hamilton, Phung, Tran, et al. [64]. This study compares

the virtual arm with a virtual arrow, and finds that while arrows support a faster reaction time a

virtual arm makes the robot more likable. AR-based visualizations that include placing a virtual
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robot in the physical space along with sensor data and a map grid are also tested in Ikeda and

Szafir [66] for supporting debugging by roboticists.

2.3.2 Path and Motion Visualization and Programming

Another popular problem in human-robot collaboration is that of understanding and pro-

gramming robot trajectory and motion. As clarified in Section 2.3.1, here we focus on paths and

trajectories of the robots, and how AR can be used to visualize or program these trajectories.

In a straightforward and intuitive example from Osaki, Kaneko, and Miwa [52] in 2008, the

human user draws lines in AR (via both projector and HMD), using a peripheral device, for the

robot to follow. The lines are then processed into trajectories which the robot can take. Similarly,

in Chestnutt, Nishiwaki, Kuffner, et al. [17] a human user directs a humanoid robot by drawing a

guide path on the ground in AR. The system then plans left-right footstep sequences for the robot

that are also displayed via AR, and the user is able to modify the path if necessary.

For a remote laser welding task, a similar line-following approach is taken in Reinhart, Munzert,

and Vogl [67], also in 2008. First the welding locations are denoted with the specific welding task to

be completed using AR projections, and next the robot paths are optimized for task completion.

Approximately 8 years later, Andersen, Bøgh, Moeslund, et al. [44] is also related to welding, this

time for stud welding in a shipbuilding environment. Projection mapping is used in this instance as

well, and a lab-based user study indicates positive results for novice users in programming the robot

to conduct accurate welding activities.

In Green, Chase, Chen, et al. [21], the authors set three different experimental conditions for

humans navigating a simulated robot through a maze with the use of AR. The 3 within-subjects

conditions tested are: Immersive Test, using an onboard camera and teleoperation without any

AR; Speech and Gesture no Planning (SGnoP), providing AR interaction with speech and gesture;

and Speech and Gesture with Planning, Review, and Modification (SGwPRM), adding to the prior

condition the opportunity to review the plan before it is executed by the robot. While the Immersive

condition is preferred by test subjects and most easily executed, SGwPRM yields the most accurate
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results. Significant user learning had to take place in both of the AR conditions, while the pure

teleoperation is a more natural mode of control. This study combines a number of different options,

such as displaying the path before robot movement begins, utilizing AR tags to display virtual

objects to the user, and integrating speech and gesture inputs.

A significant amount of research covers different ways to “teach” or program a robot using

AR. Here we present them chronologically, in part to highlight the progression of the research over

time.

In Hulin, Schmirgel, Yechiam, et al. [68], visual and haptic signals are given to a human via

AR who is using Programming by Demonstration to teach a robot arm a trajectory. The signals

are intended “to avoid singularities”. The following year in Fung, Hashimoto, Inami, et al. [35], a

human user takes photographs with an AR-enabled device and then provides annotations, which

transfer to a ground robot’s movement. In another study from Bonardi, Blatter, Fink, et al. [37],

while it does not use separate ground robots, the furniture itself is robotic and modular. Users

interact with an iPad to control the arrangement of the furniture in a shared space. While these

papers covered scenarios with humans in the same space as a robot, Hashimoto, Ishida, Inami, et al.

[51] instead deals with a robot being teleoperated from another room via touchscreen. Also in 2013,

Gianni, Gonnelli, Sinha, et al. [69] present a framework for remotely operating a semi-autonomous

ground robot as well. Their framework includes an AR interface that allows for path planning and

obstacle navigation through a handheld pen peripheral, as well as a localization system that used

dead reckoning in addition to ICP-SLAM, and a trajectory tracking algorithm. This kind of remote

communication is designed to be especially useful for situations that might pose greater risk to a

human, such as emergency rescue or scouting. Both Lambrecht and Krüger [36] and Lambrecht,

Walzel, and Krüger [70] focus on honing hand gesture recognition algorithms for spatial programming

of industrial robots. Specific contributions include recognition of specific gestures that map to

robot poses, trajectories, or task representations, and improvements in the skin color classifier and

hand/finger tracking. In a 2014 user study, Coovert, Lee, Shindev, et al. [71] demonstrate the

effectiveness of projections (such as arrows) from the robot onto the floor in front of it when moving
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in an environment among humans. Participants feel more confident about the robot’s movement

and more accurately predict its movement with projections than without. In another study the

following year, Chadalavada, Andreasson, Krug, et al. [72] suggest that a mobile ground robot that

projects its intentions onto the floor with simply a contour line is preferable to no projection at all.

Rather than use AR for directing or programming the robot, Makris, Karagiannis, Koukas, et

al. [73] suggest that an AR HMD can be used in a human-robot collaborative assembly environment

to provide the human with robot trajectory visualizations, so that they can stay safely away from

those areas. However, the presented system does not offer any recourse if the user does intersect

the denoted trajectory/path. In a study by Walker, Hedayati, Lee, et al. [18], different ARHMD

visualization designs are tested for communicating to a human in a shared space what the intent of a

quadcopter robot is. Four different visualizations are tested in a between subjects study: NavPoints,

Arrow, Gaze, and Utilities. These visualization designs each have different purposes and uses.

Hügle, Lambrecht, and Krüger [39] present a programming method for a robot arm that

involves both haptic (Programming by Demonstration) and gesture-based input. The gesture-based

input is used to provide a rough definition of the poses within the space, while AR images are used

to validate the poses and trajectories and alter the program. Next, the human takes turns leaving

the space while the robot moves to the next pose, re-entering the space to provide hands-on feedback

and alterations, and then leaving again for the next movement. Once the program is finalized, it is

transferred to the controller.

In Materna, Kapinus, Beran, et al. [46], users program a PR2 robot as an assembly assistant,

using projection-based AR on a touch-enabled table. They use a block programming technique

(with the blocks projected on the table) to select the appropriate steps for the robot to complete,

and the target locations for parts are also highlighted virtually on the table. Templates are available

offline for the users to work from, and specific parametric instructions (such as pick from feeder or

place to pose) are supported. No pre-computed joint configurations or trajectories are stored, and

all paths are planned after the program is set.

The system in Krupke, Steinicke, Lubos, et al. [74] allows a human user to interact with a
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virtual robot, move it virtually, confirm the movements via speech after watching a visualization of

the picking motion, and then observe the actual physical robot move according to those movements,

the goal being a pick-and-place task. In another pick-and-place task, non-experts are asked to

program a robot used to move printed circuit boards to and from their testing locations [75]. A

form of block programming is used in which “pucks” are chosen and placed by the user to indicate

actions and their sequences to the robot. Bambušek, Materna, Kapinus, et al. [58] provide a user

with a HoloLens HMD for programming a robot for a pick-and-place task, but also augment it

with AR projections so that others can see what the HMD-wearer is doing, to avoid confusion and

provide for safety. In this case, the robot need not be present for the programming to take place, as

object placement occurs entirely virtually at first. Interactive Spatial Augmented Reality (ISAR)

occurs along with virtual kinesthetic teaching (ISAR-HMD).

In Kästner and Lambrecht [32], a large portion of the work focuses on aligning the coordinate

systems of the HoloLens and the robot, similar to Reardon, Lee, Rogers, et al. [62], both in 2019.

After alignment is assured, then sensor data can be visualized, which includes the navigation path

of the robot that is extracted from the global path planner. Results show a struggle to visualize

the large amounts of real-time laser scan data using the HoloLens, a limitation to be addressed

in the future. To assist humans in remotely exploring unsafe or inaccessible spaces via UAV, Liu

and Shen [76] use a HoloLens to display an autonomous UAV’s “perceived 3D environment” to the

human collaborator, while the human can also place spatial targets for the robot. In an attempt to

develop an all-inclusive AR system, Corotan and Irgen-Gioro [77] present a combined augmented

reality platform for “routing, localization, and object detection” to be used in autonomous indoor

navigation of a ground robot. Other noteworthy recent research presents AR-based methods for

programming waypoints and states for robot arms [78], [79], as well as for programming robots

through learning from demonstration [80], and for projecting intended paths a social robot might

take [81].
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2.3.3 Adding Markers to the Environment to Accommodate AR

One method of making AR easier to implement is to change the surroundings by providing

tags, markers, or other additions and alterations. While this requires that the environment can

actually be prepared in this way (both that it is physically possible and temporally feasible), these

kinds of features can significantly increase the ease of AR implementation. Furthermore, AR markers

and tags are generally used to address problems of placement, labeling, and recognition encountered

when using AR technology, and aim to increase user understanding of the system. Below we share

research that demonstrates these kinds of accommodations, again chronologically.

In Green, Chen, Billinghurst, et al. [82], a Lego Mindstorms NXT robot path is planned

by a human user by combining fiducial markers, other graphics, gestures, and natural language,

specifically deictics. Paddles with different markers that indicate instructions such as “stop” or

“left” provide instructions for the robot, while the robot confirms the human’s plan using natural

language responses. AR, specifically using the markers in the environment, allows for a common

communication platform between the human and robot. The exploration of AR for HRC using

AR markers continues to progress in Green, Chase, Chen, et al. [21], where the authors set three

different experimental conditions for humans navigating a simulated robot through a maze with the

use of AR. AR markers are placed in the participant’s physical environment, on which the virtual

obstacles in the maze were modeled.

A similar task of programming a robot to follow a pre-set list of instructions utilizes fiducial

markers in Fung, Hashimoto, Inami, et al. [35]. With this handheld AR, labels are displayed in the

user’s view, allowing them to match the objects with the provided instructions, and then provide

direction to the robot.

The title of “Mixed reality for robotics” in Hönig, Milanes, Scaria, et al. [83] is so generic as

to give away the novelty of this research area. The authors’ goal is to show how mixed reality could

be used both for simulation and for implementation. One single physical robot is used as a basis

for additional virtual robots, and simulation is pitched as a research and development tool. In this
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study, markers are placed on the robots in the real world to make it easier for the simulation to

mimic the motion directly.

AR has been explored for many uses in a manufacturing environment, such as in Peake, Blech,

and Schembri [84] where AR markers are used to overlay objects on the factory floor. The images

displayed virtually can be pulled from the cloud and can provide information about machine status

and equipment usage.

There are many kinds of uses for AR tags and fiducial markers, or ways in which the

environment can be altered to accommodate the use of augmented reality. Fiducial markers are

used in Frank, Moorhead, and Kapila [40] to both denote possible goal locations and to label

movable objects, which are to be recognized by the robot and the AR device. This simplifies

the recognition aspects significantly, removing that process from the system. In order to locate

and orient a ground-based robot in a confined space, Hashimoto, Ishida, Inami, et al. [51] label

its corners with fiducial markers. This facilitates the control of the robot by a remote user via

touchscreen.

2.3.4 Manufacturing and Assembly

One domain in which solutions for creating and understanding the human-robot collaborative

system are particularly applicable is that of manufacturing and assembly. Specific tasks performed

in such environments, and which can benefit from the use of AR, include tool alignment, workspace

visualization, safety precautions, procedure display, and task-level programming. Especially over the

last 5 years, the manufacturing environment has become a popular research area for AR in HRC.

In a study intended to represent the tasks of a factory robot, Stadler, Kain, Giuliani, et al. [38]

task participants with using a tablet-based AR to teleoperate a Sphero robot in 3 different activities:

tool center point teaching, trajectory teaching, and overlap teaching. The AR tablet provides

“task-based support parameters” in the form of shapes, guiding lines, start and end points, and

radii. Workload decreases with the tablet-based AR, however task completion time increases. The

authors suggest this could be attributed to the support parameters providing a visible comparison
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for exactness.

In a robot-assisted assembly scenario, AR shows potential usefulness in multiple ways, such

as displaying assembly process information, visualizing robot motion and the workspace, providing

real-time alerts, and showing production data [73]. The specific case study applies to the automotive

industry, where a COMAU NJ 130 robot works in a cell collocated with a human. A red volume

denotes the robot’s workspace, the green volume is safe for the operator, and the current task is

shown at the top of a screen. This proof of concept is intended to show the additional safety and

efficiency afforded with the use of AR. Also in 2016, [85] apply an “object-aware projection technique”

to facilitate robot-assisted manufacturing tasks like the installation of a car door. Projections such

as wireframes and warning symbols aid the human in understanding robot intent. Another study

intended to improve assembly operations, Materna, Kapinus, Beran, et al. [46] uses a PR2 robot

as the worker’s assistant, helping to prepare the parts for assembly. The worker is aided by AR

to create a block program for the robot, see the instructions, view object outlines, and receive

information about the state of the system as well as additional information. Unfortunately the robot

itself is relatively unreliable during the experiment, and other usability issues are also apparent

(participants blocking part of the table where the robot should place its parts, or participants

intentionally or unintentionally ignoring errors shown via dialog boxes and audio in the system).

Future studies should take into consideration these kinds of limitations.

[84] also work towards implementing AR in a robot-enabled factory, using a mobile device

and AR tags to display virtual objects and their expected manipulation by the robot on the factory

floor. Research in Guhl, Tung, and Kruger [24] takes this concept further by implementing multiple

AR modalities that allow a worker to impose movement restrictions, change joint angles, and create

programs for a robot in the factory on the fly, including the UR 5, Comau NJ 130, and KR 6.

A seemingly common application for AR for HRC is in robotic welding [25], [44], [67]. The

dangers of welding combined with the accuracy required for welding tasks are perhaps what make

this a potentially useful application. In Reinhart, Munzert, and Vogl [67], AR was used to assist

with programming the remote laser welder, providing a user the capability to define task-level
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operations. In both Reinhart, Munzert, and Vogl [67] and Andersen, Bøgh, Moeslund, et al. [44],

projection-based AR is used to display the weld plan to the user directly on the area to be welded.

In Yew, Ong, and Nee [25], however, an HMD displays virtual objects in the user’s field of view so

that they can teleoperate a remote welder.

Puljiz, Krebs, Bösing, et al. [86] draw on the built-in mapping and localization capabilities

of the HoloLens to establish safe zones and other areas of interest within a robot cell, rather than

relying on an external source. Results presented in the paper show that the mapping can aid in

setup of the robot cell, and the HMD allows for straightforward editing of the map and safety zones.

2.4 Improving the Collaboration

The subsections that follow contain literature that addresses the problem of improving the

collaboration between the robot and the human via augmented reality. Research is grouped

depending on the domain of the collaboration. We examine domains from different perspectives,

including use cases and applications.

2.4.1 AR for Teleoperation

Beginning with [110] and continuing with [111], robot teleoperation has remained a central

problem in human-robot collaboration, for which augmented reality can provide some solutions.

The contributions of research using AR for teleoperation are chronologically summarized here.

Ito, Niwa, and Slocum [48] suggest visual overlays for robot-assisted, teleoperated dental work,

in yet another example of the use of AR for HRC in the medical fields. In this particular case, the

work is not done directly on patients but for a dental milling machine to prepare tooth crowns. In

this paper, the machine itself is presented, with the AR concept being a virtual object superimposed

over the actual object while the machine was being operated.

For UAV (unmanned aerial vehicle) control, AR has been shown to improve the situational

awareness of the operators and to improve the path choice of the operators during training as in

Hing, Sevcik, and Oh [87]. (For more on situational awareness evaluation, see Section 2.5.1.5.)
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Operators are provided with two different types of AR “chase views” that enable them to observe the

UAV in the environment. Other teleoperated robots are those operated beneath the surface of the

water (ROVs, or remotely operated vehicles, also known as UUVs or unmanned underwater vehicles).

Domingues, Essabbah, Cheaib, et al. [50] present a virtual diving experience that used teleoperated

ROVs and AR. Riordan, Horgan, and Toal [88] showcase a real-time mapping and display of subsea

environments using technology enabled by UUVs; this provides remote teleoperators with a live

experience of the environment in relatively high resolution via the combination of technologies

presented in the paper.

Another way of assisting a remote operator is by placing them virtually into the environment

of the robot as in Krückel, Nolden, Ferrein, et al. [23], so that they can in fact operate egocentrically.

An alternative to placing the operator into the entire virtual environment is to use a combination

of virtual and real objects to mimic the robot’s workspace, as in Yew, Ong, and Nee [25]. In this

example, a maintenance robot is shown virtually in AR, along with some aspects of its surroundings,

while prototypes of some of the physical features are also present in the operator’s immediate

environment. In this way, tasks such as visual inspection or corrective task execution can be

completed remotely via teleoperation.

With the comprehensive system presented in Huy, Vietcheslav, and Seet Gim Lee [56], a

peripheral/haptic device is used to teleoperate the robot, and information and feedback are shown

to the human user via an HMD and laser projection mounted to the mobile ground robot. One

feature of the handheld peripheral is a laser pointer that can be used to identify a goal location for

the robot, following which the operator confirms the choice in AR, then the robot moves to that

location autonomously.

As the concept of using AR for teleoperation continues to evolve, the designs have become

more advanced. In Hedayati, Walker, and Szafir [33], three different design methodologies are

presented for communicating information to an operator collocated with an aerial robot. This design

framework urges the designer to consider how information is presented, whether it is (1) augmenting

the environment, (2) augmenting the robot, or (3) augmenting the user interface. In the experiment,
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each of these three interface design implementations prove to be an improvement over the baseline.

Puljiz, Stöhr, Riesterer, et al. [29] present a method of generating a 6-DOF robot virtually in

AR with a HoloLens, and then allowing the user to manipulate the hologram as a form of teleoperation,

either in situ or remotely. Similarly, Walker, Hedayati, and Szafir [20] successfully demonstrate the

use of “augmented reality virtual surrogates” of aerial robots that can be manipulated using an

HMD as a form of teleoperation. In a shared control situation, where a human user with a remote

control must grasp an object with a robot arm using an assistive controller, Brooks and Szafir [89]

show that AR visualization increases acceptance of assistance as well as improves the predictability

rating, but does not affect the perceived usability. There is even evidence that humans in remote

control of robot swarms prefer trajectory information delivered via AR [90].

2.4.2 Pick-and-Place

While pick-and-place operations are applicable across many of the domains already discussed

such as path planning, manufacturing, and teleoperation, here we highlight problems of pick and

place in human-robot collaboration as solved by augmented reality for those who are interested in

this particular body of research.

In Hashimoto, Ishida, Inami, et al. [51], a multi-DOF robot arm is mounted to a mobile

ground robot, giving the resulting system a total of 6 DOF. This robot is then teleoperated through

a touchscreen AR interface to perform tasks remotely (in another room), such as approaching a

bottle, grasping it, and dropping it into the trash. The experiment is designed to determine subjects’

preferred type of interaction with the touchscreen. Unfortunately these results are somewhat

inconclusive, as the study was conducted on a small scale and participants did not show one clear

preference.

In Frank, Moorhead, and Kapila [40] a tabletop two-armed robot is controlled via an AR-

enabled tablet in a shared space. Different views are provided to the user in a between-subjects

study: overhead, robot egocentric, and mobile (using the rear-facing camera on the tablet). Mixed

reality is enabled in all of these views, to the extent possible with the cameras employed. The
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pick-and-place task requires users to command the robot to move tabletop objects from one location

on the table to their designated bins on the table in front of the robot. Yet again the results show a

relatively equal performance level among participants, regardless of the view provided.

Sibirtseva, Kontogiorgos, Nykvist, et al. [57] use verbal commands for a YuMi robot performing

object retrieval tasks, and investigate the implementation of different visualizations to clarify the

requests. In a within-subjects study, three visualization modalities are tested: monitor, which uses

an external screen to highlight the potential object; projector, wherein the object is highlighted

directly on the workspace; and head-mounted display, where a HoloLens highlights the object

virtually in the real world. The system uses a wizard to perform the natural language recognition

for colors and shapes of the objects; the remainder of the system is designed for the experiment.

The authors choose a flat workspace for the experiment, assuming that a more complex workspace

or area would essentially bias the results towards an HMD being preferable, due to difficulties with

projection and/or occlusions. The claim is that this experiment is intended to compare the three

AR modalities as directly as possible, rather than optimize for a specific task. While participants

claim that the head-mounted display is more engaging, they generally prefer the projection-based

AR.

To investigate the use of “drag-and-drop” in AR to program a UR5 robot arm, Rudorfer,

Guhl, Hoffmann, et al. [28] test their “Holo Pick-n-Place” method. A user can virtually manipulate

an object from one place to another within the HoloLens, and those instructions are then interpreted

by the system and sent to the robot. The HoloLens uses object recognition to overlay the virtual

CAD models of objects onto the physical objects, which the user can then drag and drop into the

desired locations. A proof of concept is presented, and accuracy proves to be limited due to the

HoloLens’s limitations in gaze and calibration. The system also does not allow object stacking or

placement anywhere other than on one surface. With the release of the HoloLens 2, some of these

issues may be resolved in future studies.

In Chacko and Kapila [91], virtual objects are created and manipulated by a human user

in AR, and these virtual objects are then used by the robot to optimize a pick and place task.
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The system allows an estimation of position, orientation, and dimension of an object in physical

space that is unknown to the robot, and this information is used by the robot to then manipulate

the object. The user also dictates what type of grasping motion to use, with the options being

horizontal (objects that can be grasped from above, so as to keep them oriented horizontally) and

vertical (objects that can be grasped from the sides, so as to keep them oriented vertically).

In Bambušek, Materna, Kapinus, et al. [58], a HoloLens and touch-enabled table with AR

projection are combined to program a robot to perform tabletop pick-and-place tasks. In this case,

these modalities were compared with kinesthetic teaching, or physically manipulating the robot’s

arms. An advantage of this system is the removal of the requirement that the robot be present

during programming, since tasks can be verified in the HoloLens.

2.4.3 Search and Rescue

Search and rescue operations present a natural application for using AR to facilitate and

amplify human-robot collaboration. Dangerous situations can be explored by robots while a human

provides guidance, oversight, and even teleoperation from a distance, using the improved situational

awareness and nuanced communication enabled by AR. Specific issues that can be addressed by AR

in a search and rescue HRC situation include a potentially dynamic and unknown environment, often

resulting in the need for visual assistance, as well as remote communication of essential information

about safety, terrain, or location of human and robot agents.

In 2009, Martins and Ventura [92] implement a rectification algorithm for using an HMD

to teleoperate a mobile ground robot. In this application, head movements can be tracked and

utilized to tilt the camera or turn the robot. Additionally, when the user’s head is tilted from side

to side, the rectification algorithm ensures that the remote image stays aligned with the horizon.

Gianni, Gonnelli, Sinha, et al. [69] propose a framework for planning and control of ground robots

in rescue environments. A human operator uses an AR interface that provides capabilities for path

planning, obstacle avoidance, and a pen-style interaction modality. The following year, in 2014,

Zalud, Kocmanova, Burian, et al. [93] demonstrate a method of combining color and thermal images
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in AR especially for use cases with low visibility as in rescue situations. Four years later, Reardon,

Lee, and Fink [31] implemented AR for search and rescue with a ground based robot (Clearpath

Robotics Jackal) using a HoloLens. The advances with this new technology included vector-style

visualization of the robot pose and trajectory and expedited communication of search results.

In Reardon, Lee, Rogers, et al. [62], an explorer robot and human user communicate with

each other via an AR HMD, with the key components being an unstructured, uninstrumented

environment and bi-directional communication. An autonomous robot searches the environment

with a human, with the intent to expedite the search over what could be done with solely robotic

or solely human exploration. The human (via the HMD) and the robot are equipped with SLAM

capability and are able to share their respective information with each other, and thus create

a composite map of the area. Furthermore, the AR is used to communicate the current plan,

the task’s state, and future actions of the robot, thereby also influencing the choices that the

human makes. In an extension of this work, Gregory, Reardon, Lee, et al. [55] demonstrate the

usefulness of a gesture glove for giving commands to the robot for reconnaissance style missions.

In a pilot study, novice participants must use the Manus VR gesture glove and a HoloLens to

command the robot in mapping three different environments (subway platform, basement, and

office building). Preliminary results show that these tasks can be completed both in Line-of-Sight

and Non-Line-of-Sight operations without extensive training, and also highlighted the importance

of choosing easily articulated gestures. Researchers also note that the participants make use of

commands in unanticipated ways, such as utilizing a “return” command to only partially move

the robot back, to then be able to issue a different command from this intermediate location.

Reardon, Haring, Gregory, et al. [94] demonstrated that an ARHMD could be a suitable method for

communicating robot-observed changes in the environment. The experiment, conducted remotely,

provided participants with video of the environment with AR-provided, circular shaded regions that

highlighted changed areas. Participants were then asked to rate their confidence in the AR-provided

change indicators. While improvements could be made on this method, it proved to be a significant

step in implementing this kind of visualization to aid in scene change identification. Taking these
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techniques a step further, Walker, Chen, Whitlock, et al. [95] show that an ARHMD could be

used to allow emergency responders to quickly visualize an area, for example during firefighting

operations, particularly by augmenting images provided by a remote robot.

Even more recently, Tabrez, Luebbers, and Hayes [96] explored different types of AR com-

munication for joint human-robot search tasks, leveraging techniques from explainable AI where

insight is provided into a robot’s decision-making to attempt to improve situational awareness. They

introduced two complementary modalities of AR-based visual guidance for the human teammate,

generated by a multi-agent search algorithm for uncertain environments: prescriptive guidance (the

robot directly recommending actions), and descriptive guidance (the robot showcasing the state

space information used in its decision-making). In a comparison of these modalities (as well as a

combined interface), they found that the combination of prescriptive and descriptive guidance led

to the highest perceived trust and interpretability, the highest task performance, and made human

collaborators act more independently.

2.4.4 Medical

There are a number of applications of AR for improving human-robot collaboration in robot-

assisted dental work as well as for robot-assisted surgery. [97] provide an extensive review of AR for

robotic-assisted surgery, providing a comprehensive list of application paradigms: surgical guidance,

interative surgery planning, port placement, advanced visualization of anatomy, supervised robot

motion, sensory substitution, bedside assistance, and skill training. We will highlight some of

the medical applications here to demonstrate a chronology, however for a full review of AR in

robotic-assisted surgery, the reader should refer to Qian, Wu, DiMaio, et al. [97].

For performing dental work, Ito, Niwa, and Slocum [48] presents visual overlays in AR for

a robot-assisted dental milling machine via teleoperation. Virtual objects are superimposed on

physical objects, allowing the user to see the trajectory of the cutting tool path as well as a patient’s

internal bones.

For a situation requiring first aid, experts are often not at the site to provide treatment. It is
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specifically cases like these that Oyama, Watanabe, Mikado, et al. [98] attempts to address with

a Remote Behavior Navigation System (RBNS). This system equips a person at the site of the

emergency with a camera, microphone, and HMD, while a remote expert is able to view the camera

feed and provide directions for care that are mimicked in the HMD virtually. The experiment

challenges a participant to construct an arm sling using the RBNS, remotely guided by an expert.

The AR system presented in Filippeschi, Brizzi, Ruffaldi, et al. [99] is a complete system

for remote palpation (examination by touch), in the case where a patient and a doctor are not

collocated. Both visual and haptic feedback are provided to the doctor, and the patient is in view

of an RGBD camera.

For assistance both before and during surgery, Adagolodjo, Trivisonne, Haouchine, et al. [100]

develop an AR system for visualizing tumors and blood vessels around the surgery site. Approximate

3D pose information is obtained from 2D silhouettes, proving this method potentially useful for

planning surgical operations. Similarly, in Zevallos, Rangaprasad, Salman, et al. [101], AR is used

to show the shape and location of tumors by visually overlaying that information onto the actual

organ, in an effort to assist surgeons. In this example the surgeons use the da Vinci Research Kit

(dVRK), a robotic surgery assistant. A system is presented to autonomously locate the tumor,

provide stiffness and related information about the tumor, and then overlay the information on a

model of the affected organ for display to the user. Another application for surgery is from Qian,

Deguet, Wang, et al. [34], where the First Assistant is provided with a HoloLens that is equipped to

aid them with instrument insertion and tool manipulation while using the da Vinci robotic surgery

assistant. Experimental results show potential improvement in efficiency, safety, and hand-eye

coordination.

Elsdon and Demiris [30] use a HoloLens and a “spray robot” for dosed application of topical

medication. Because sprayed dosage is difficult to visualize, the density is visualized virtually, and

the Actuated Spray Robot is enabled with three different modes: manual (user must pull trigger

and move sprayer), semi-automatic (trigger is actuated automatically but user must move the spray

head), and autonomous (both the trigger and head articulation are automated). A more even
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density (greater accuracy) is achieved with both semi-automatic and automatic modes than with

manual spraying, although manual was fastest. The experimenters speculate that because both of

the automatic modes do not allow mistakes to be made, participants may tend towards perfection

in those modes, increasing the time spent on the task. This technology could also be applicable in

manufacturing, for paint and other coatings requiring a spray application.

2.4.5 Space

Space applications pose challenging problems, especially as the work sites reach farther and

farther from earth. Any teleoperation must account for the time delays imposed by these long

communication distances, a problem explored deeply by [102]. Xia, Léonard, Deguet, et al. [103]

attempt to work within these constraints by using augmented reality to help simulate the time delay

for a remote operator. Via AR, different virtual fixtures are tested to aid the operator, both with

and without a time delay. Use of virtual line fixtures is the best option, with or without the delay,

while using virtual planes decreases the task time to less than 1/3 of the unassisted task with a

time delay. The design of this experiment, while in this case is applied to satellite repair, is derived

from medical applications, and could have applications in this field as well, especially as it relates to

medical care during space travel.

Somewhat surprisingly, literature on AR for HRC in space applications seems few and

far between. Furthermore, most of the found literature is for remote teleoperation rather than

collocation. We speculate that this could be due to a combination of factors. Most importantly,

currently humans are only present in space in low Earth orbit, on the International Space Station

or on brief launches in relatively small spacecraft. While some robots exist in these locations, the

opportunities for incorporating AR into their use have been sparse. Furthermore, due to the time

delay in communicating with remote robotic spacecraft and rovers, such as the Mars Exploration

Rovers (Spirit and Opportunity) or the Mars Science Laboratory (Curiosity) prohibits convenient

real-time HRC. Thus, more of the research related to these kinds of collaboration feature virtual

reality or augmented virtuality instead. With upcoming missions due to land humans on the moon,
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and eventually on Mars, this is an area rich for future research.

Virtual, augmented, and mixed reality (VAMR) will be key components of HRI and autonomy

as we head into the future of space exploration. While prior work applying VAMR to HRI is

generally done in close proximity and without a significant time delay [20], [25], [29], [33], [62],

with appropriate focus, VAMR can be adequately developed to assist both proximal and remote

HRI. VAMR currently provides nearby operators with supplemental information and visual aids,

increased situational awareness, and additional functionality and modes of communication [45], [62],

[112]. These same tools can be applied for operational uses in both a collaborative Martian task or a

more remote task on Europa. During a Mars EVA, a human-robot team might be exploring an area

together. The human, aided by navigation cues and object recognition in their AR heads-up display,

can guide the rover or quadcopter to conduct further investigation. In a cooperative construction

task such as the one described above, information can be displayed in AR to provide insight into the

robot’s decisions to improve situational awareness, and visual aids might provide a shared mental

model. Alternately, a remote operator planning a traverse on Europa could be experiencing the

setting of the robot via VR, enabling them to program and execute commands using waypoints

placed from a first person or overhead perspective. Planned paths can be previewed in VR with

potential issues highlighted in the user’s field of view. This experience also increases the operator’s

situational awareness of the robot’s environment. Meanwhile, repeated use and training can allow

the human to understand the autonomy decisions and capabilities from the visual perspective of the

robot. In both situations, the use of VAMR provides additional safety for both the humans and

robots.

2.4.6 Safety and Ownership of Space

The collaboration problem of indicating to humans whether a space is safe to traverse, whether

space is “owned” by the robot, or whether it is otherwise occupied or available has been explored in

a number of different studies. As mentioned above in Section 2.3.1, work in Bolano, Juelg, Roennau,

et al. [47] displays to users the intended goal locations, paths, and swept volumes of the robot



41

and its end effector. The technology in Sprute, Tönnies, and König [41] provides a human with

the ability to restrict a robot’s workspace by drawing on a tablet in AR. In Makris, Karagiannis,

Koukas, et al. [73], shaded rectangular prisms in a human’s AR HMD denote the “safety volume” in

green and the “robot’s working area” in red. Alternately, in Frank, Moorhead, and Kapila [40], red

shaded areas of the working plane indicate prohibited regions for the robot, and green shaded areas

indicate allowable regions that the robot can reach. Puljiz, Krebs, Bösing, et al. [86] also highlight

the ability to denote safety zones using their HMD-based mapping and interaction methods in a

robot work cell in a manufacturing environment. New work in spatial ownership during collocated

activities also shows that AR-delivered visualizations alone are insufficient for achieving human

compliance with robot instructions, even in a high risk environment when humans are in close

proximity to potentially dangerous airborne robots [3].

Notably, the use of green and red seems mostly dependent on whether the human is teleoper-

ating, programming, or otherwise controlling the robot (in which case green indicates areas they are

allowed to move the robot into), or whether they are performing a task in parallel (in which case

green indicates areas where they are safe from the robot).

2.4.7 Other Applications

While somewhat unconventional, the following applications provide unique and creative

perspectives on the possibilities for implementing AR for HRC. These researchers are trying to

push people’s boundaries on what makes for a good AR/HRC combination. We included these

unconventional perspectives with the intent to inspire future work envisioning such systems. These

works ask questions like, “How can we make this something that might be useful every day?” and,

“What do people think about incorporating robots and AR into their daily activities?”

In Ro, Byun, Kim, et al. [104], a robot is presented as a museum docent that uses projection-

based AR to share information with human visitors. Applications for this technology might also

expand past museums to malls and city streets, or even classrooms.

Mavridis and Hanson [105] designed the IbnSina (Avicenna) theatre installation to integrate
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humans and technology, and to provide a place for art, research, and education to come together.

The stage is outfitted with sensors and is occupied by a humanoid robot along with humans. Though

not yet fully implemented, the theater is intended to be interactive, and is to be equipped with a

screen, lights, and audio and video systems, enabling holograms and interaction.

Anticipating future restaurant applications, Pereira, Carter, Leite, et al. [106] present a fast

food robot waiter system in a wizard-of-oz study. Participants in a within-subjects study teleoperate

the robot either solo or with a partner, using a headset and joysticks.

Omidshafiei, Agha-Mohammadi, Chen, et al. [107] outline the usefulness of AR when

prototyping and testing algorithms. By combining physical and virtual robots in an augmented

environment via the use of projection AR, motion capture, and cameras, different systems can be

tested and evaluated in full view of the researchers, and without the risks involved in deploying

them in the outside world.

Another nascent research area for AR-based HRC is Socially Assistive Robot tutoring, as in

Mahajan, Groechel, Pakkar, et al. [108]. In this study, the researchers assess the use of common

2D usability metrics, such as performance, manipulation time, and gaze, and their correlation with

usability scores from the System Usability Scale (SUS) survey. During an AR-assisted programming

task, they find a positive correlation of usability with gaze, but not with manipulation time or

performance.

2.5 Evaluation Strategies and Methods

In general, we are all working towards developing something “better.” What we mean by

“better,” however, can have vastly different definitions based on the context and the intent. Better

could be faster, more efficient, more directly, safer, with higher fluency, with greater situational

awareness, or many other possibilities. In order to evaluate whether something is better, both

objective and subjective measures can be made via multiple kinds of evaluations. These evaluations

and measures are the subject of this section.

Because there are many aspects to evaluation, here we take a few different approaches. First,
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we highlight some instruments and questionnaires that have been used in evaluating AR for HRC.

Then we discuss the choice to conduct extensive user studies, pilot testing, or only proof-of-concept

testing, and the value of each of these options, as well as considerations for recruiting participants.

2.5.1 Instruments, Questionnaires, and Techniques

Summary of Instruments and Techniques for Evaluation

Instrument/Technique Reference(s)

NASA Task Load Index (TLX) [113]

Godspeed Questionnaire Series (GQS) [114], [115]

User Experience Questionnaire (UEQ) [116]

System Usability Scale (SUS) [117]

Situational Awareness Evaluation [118]

Task-Specific Evaluations [119], [120]

Comprehensive Evaluation Designs [121]–[123]

Table 2.2: This table summarizes the instruments, questionnaires, and techniques elaborated on in

Section 2.5.1, along with the reference(s) applicable to each.

2.5.1.1 NASA Task Load Index (TLX)

Use of the NASA Task Load Index or NASA TLX instrument [113] is perhaps one of the

most widespread in assessing AR for human-robot collaboration [30], [38], [40], [42], [46], [58], [74].

The NASA TLX assesses work load on six scales [113] and was originated by Hart and Staveland in

1988 [124]. The six scales are Mental Demand, Physical Demand, Temporal Demand, Performance,

Effort, and Frustration. The instrument is now available in both paper-and-pencil as well as mobile

app format [113], making it very easy for the experimenter to deploy and for the subject to use.
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2.5.1.2 Godspeed Questionnaire Series (GQS)

The Godspeed Questionnaire Series [114], [115] was developed by Bartneck et al. in 2009 as

a way to measure “anthropomorphism, animacy, likeability, perceived intelligence, and perceived

safety of robots”. Each of these 5 areas contain 3-6 Likert-type scales on which to rate the robot.

This questionnaire was used to measure “perception of an artificial embodied agent” in Rotsidis,

Theodorou, Bryson, et al. [43], while in Williams, Bussing, Cabrol, et al. [63] only the Likability

section was utilized.

2.5.1.3 User Experience Questionnaire (UEQ)

Both Bambušek, Materna, Kapinus, et al. [58] and Kapinus, Beran, Materna, et al. [75]

utilized the User Experience Questionnaire [116], or UEQ, as part of the evaluation. The UEQ is

a 26-item assessment; each item is ranked on a 7-point scale. The results provide a rating of the

product being evaluated on 6 separate scales: attractiveness, perspicuity, efficiency, dependability,

stimulation, and novelty.

2.5.1.4 System Usability Scale (SUS)

Measuring usability with the SUS is a method of quantifying a somewhat qualitative element

of a design or technology. One measure of usability that a number of studies [46], [58], [78], [89],

[108] utilize is the System Usability Scale or SUS [117]. The SUS consists of 10 statements that

users can rank on a scale of 1 to 5, from strongly disagree to strongly agree). Example statements

include “I think that I would like to use this system frequently” and “I found the system very

cumbersome to use”. To attain the total SUS score, for all odd numbered responses subtract 1,

and for all even numbered responses subtract the response from 5. Add these scores together, then

multiply the total by 2.5. This provides a score in the range of 0 to 100.



45

2.5.1.5 Situational Awareness Evaluation

A common claim is that AR lends itself to increasing the user’s situational awareness, or

SA. Many papers in this survey claimed to evaluate situational awareness [25], [40], [88], [97],

[125]–[127], but few actually had a way to evaluate this [31], [33], [62], [87]. Endsley [118] defines

situation awareness as “the pilot’s internal model of the world around him [sic] at any point in

time,” what roboticists might refer to as a mental model. Specifically, a version of the Situational

Awareness Global Assessment Technique (SAGAT) developed by Endsley [118] is used in Srinivasan

and Schilling [125]. The SAGAT was developed in 1988 (interestingly, this also coincides with the

original publication of the NASA TLX) to assess aircraft designs for pilots’ situational awareness.

Scholtz et al. adapted the SAGAT in 2004 for (semi-)autonomous vehicles (“robotic vehicles”) and

human-robot interaction, specifically the “supervisory role” that humans play in this situation [128],

[129]. In the original SAGAT, the experiment is paused at various points throughout the study,

and during these pauses the pilot/subject is asked a series of questions that are intended to assess

their awareness of aspects of the current situation. The evaluation is given via computer to allow

for randomized questions as well as rapid response inputs. A composite score is acquired based on

the total response results. It is important to note that SAGAT is a technique and not a specific

instrument or questionnaire. The particular questions asked during each pause or interruption are

entirely dependent on the environment in which SA is being evaluated.

2.5.1.6 Task-Specific Evaluations

When conducting a user study, the researchers should conduct a thorough search to discover

existing instruments for their technology’s particular use case.

For example, in testing the functionality of an AR design to be used by robotic wheelchair

operators, Zolotas, Elsdon, and Demiris [26] choose skills from the Wheelchair Skills Test, version

4.2 [119], [120]. The most current version of this manual is now version 5.1 [130], and it contains the

specifics of the Wheelchair Skills Test, or WST, with individual skills, a questionnaire (WST-Q),
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and training. Examples of the skills assessed include turn while moving forwards (90°), turn while

moving backwards (90°), and gets over threshold (2cm). Because there is an established test and

instrument for these kinds of skills, it follows that the WST and WST-Q would be used to evaluate

an AR system intended to assist robotic wheelchair users.

2.5.1.7 Comprehensive Evaluation Designs

Experiments in Kalpagam Ganesan, Rathore, Ross, et al. [45] utilize “questionnaire items...inspired

and adopted from Hoffman [121] [since updated in Hoffman [2]], Gombolay, Gutierrez, Clarke, et al.

[122], and Dragan, Bauman, Forlizzi, et al. [123].” Here we discuss why these three works present

ideal fodder for comprehensive questionnaires.

In Hoffman [2], Hoffman defines fluency in HRI and then presents metrics for measuring

fluency. In defining fluency, he states that, “when humans collaborate on a shared activity, and

especially when they are accustomed to the task and to each other, they can reach a high level

of coordination, resulting in a well-synchronized meshing of their actions. Their timing is precise

and efficient, they alter their plans and actions appropriately and dynamically, and this behavior

emerges often without exchanging much verbal information. We denote this quality of interaction

the fluency of the shared activity.” Hoffman also clarifies that fluency is distinct from efficiency, and

that people can perceive increased fluency even without improvement in efficiency. These fluency

measures include both objective (for example, percentage of total time that both human and robot

act concurrently) and subjective metrics (for example, scale ratings of trust and improvement).

Both Gombolay, Gutierrez, Clarke, et al. [122] and Dragan, Bauman, Forlizzi, et al. [123]

actually draw substantially from the measures presented in Hoffman [2]. [122] choose to use 13

questionnaire items from the subjective metrics in Hoffman [121] and augment this list with 8 of

their own “Additional Measures of Team Fluency,” focused on the human’s satisfaction with the

teamwork. [123] use both objective and subjective measures from Hoffman [2], and add items related

to closeness, predictability, and legibility.

We recognize that none of the studies that Kalpagam Ganesan, Rathore, Ross, et al. [45]
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draws from are necessarily related to the use of augmented reality for human-robot collaboration.

However, the relevance and appropriateness is apparent, and can easily be used in combination with

other metrics specific to AR.

2.5.2 The Choice to Conduct User/Usability Testing

Three main themes in testing and evaluation emerge from the papers reviewed. (1) Pilot

testing provides a way to verify that research, technology, or evaluation is headed in the right

direction, or to determine certain specifics about a subsequent evaluation. (2) Proof of concept

experiments or prototypes can demonstrate that a particular technology can in fact be implemented,

and might also highlight additional directions to take the research. (3) User or usability testing

provides the researchers with feedback and data on their current designs; the better the participant

pool (again, note that “better” is a loaded word here), the more trust they can typically have in

their results. We look more deeply at each of these three themes in this section.

2.5.2.1 Pilot Testing as Verification

Some studies use a pilot test to then inform a larger scale test that is also described in the

same paper. In Qian, Deguet, Wang, et al. [34], where the authors present a form of AR to assist

a surgeon’s First Assistant with the da Vinci robotic manipulator, they first perform a pilot test

with 3 surgeons. After this initial evaluation, and using feedback from the pilot subjects, they then

conduct an n=20 user study. [74] briefly mention an initial pilot study to evaluate whether pointing

and head gaze were natural modes of selection for a user, before explaining their more thorough

n=16 user study. In Sibirtseva, Kontogiorgos, Nykvist, et al. [57], a human-human pilot study is

conducted (n=10), where data is collected on the vocabulary used to describe Lego objects between

human partners. Informed by this pilot, the authors decide to resort to a wizarded system for the

natural language processing portion of their experimental setup.

Alternately, other studies only present on a pilot test, then address how this test might inform

future, larger scale testing. [131] report on their pilot study (n=10) that requires users to complete
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2 tasks in 2 different conditions: the experimental condition of a “proposed AR-robotic interface”

and a gamepad. These authors then proceed to discuss a case study, where the technology is applied

to the process of carbon-fiber-reinforced-polymer production, and then pilot tested on 1 user. To

evaluate the design of an AR HMD for wheelchair users, [26] run a between-subjects pilot test on

16 participants who must navigate a route 4 separate times, either with or without the AR visual

assistance. All of the results can inform future iterations of the design. In Yew, Ong, and Nee

[25], a pilot test is presented using their prototype, to show that combining virtual objects with

in situ spaces can function for teleoperation of robots. Tasks are completed by the novice users

(n=5) in a short amount of time, setting the stage for future evaluations and also revealing areas for

improvement of the design (tracking sensors and algorithms, depth sensors for unforeseen hazards).

2.5.2.2 Usability Testing

Throughout this paper, there have been examples of numerous studies that conduct full

usability or user testing. Some highly cited examples include Walker, Hedayati, Lee, et al. [18],

Hedayati, Walker, and Szafir [33], and Chakraborti, Sreedharan, Kulkarni, et al. [60]. Commonalities

among these experiments include a relatively high number of participants and a thoroughly and

intentionally designed study. In all of these examples, participants take part in the study in person.

Another option is to perform testing using Amazon Mechanical Turk (MTurk) users who view videos

or simulations of the system. By using MTurk, the number of subjects can often be expanded,

however limitations include the mode of interaction and the kinds of participants.

2.5.2.3 Proof of Concept Experiments

The two kinds of evaluation presented in Sections 2.5.2.1 and 2.5.2.2 are both intended to

gather objective data (for example, how long a task takes to complete or where there is overlap in

the duties of the human and the robot) as well as subjective data (for example, whether the human

user understood a command or preferred a certain type of interface). Meanwhile, other experiments

published show that a technology can indeed be implemented in a certain way, with the intent to
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solve a particular problem. One example of this kind of experiment is in Reardon, Lee, Rogers, et

al. [62]. In this work, the authors thoroughly document how they successfully implemented an AR

display for use in assisting a human user while they collaboratively explored a potentially dangerous

space with a ground-based robot. They combine an understanding of cooperative exploration with

complete integration of the robot’s and human’s points of view, and augment this with additional

data provided to the human by the robot. In the experiments described, the system successfully

performs all necessary tasks.

Other examples of a proof of concept study include a generalized AR system that is laid

out for human operators working with assembly line robots in automotive manufacturing [73], an

AR/VR system in collaboration with a ROV designed to enable virtual SCUBA diving [50], virtual

drag-and-drop programming of a robot arm for a pick-and-place task [28], robotic-assisted masking

of areas for mechanical repairs [132], a system for AR-enabled online programming of industrial

robots including motion and hand gesture tracking [36], an architecture for implementing AR for

programming robots using multiple modalities in industrial settings [24], and the use of built-in

mapping functionality in a HoloLens to establish the working environment for a robot arm in a

work cell [86].

2.5.2.4 Choosing the Type of Evaluation to Conduct

How does one choose the right kind of evaluation for a particular technology or study?

Elements to consider include: (a) how far along the technology is in its development, (b) how many

test subjects it would take to validate or evaluate the design, (c) whether the technology is safe

for human subjects, (d) what research questions are being asked. Sometimes a pilot study may be

warranted to obtain additional details before proceeding. In other cases it is only the technology

that needs to be showcased, and extensive user testing is not necessary. If the researchers are

attempting to show increased usability, safety, or fluency, a full scale human subjects experiment

will be necessary. We recommend starting by examining the goals of the evaluation, for example

framing it in terms of one of the previous three sections (pilot testing, usability testing, or proof of
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concept). From there, similar studies can be referenced that have comparable intents. Informed

by this survey and prior work, the researcher can choose appropriate instruments or evaluation

techniques for their own purposes.

2.5.2.5 Recruiting Participants for Human Subjects Studies

We would also like to address the issue of recruiting participants for user studies. There are

multiple factors to consider, all related to diversity in the participant pool, which we enumerate

here.

• Diversity in experience. Novice participants are often recruited local university student

population out of convenience. Researchers should consider whether recruiting experienced

or trained participants (who might be experts or professionals in the tasks being performed)

might benefit their study.

• Diversity in age. Again, if the participants are mostly recruited from one age group,

such as university undergraduates or employees of one group at a company, their prior

experiences may prove to be somewhat uniform. As technology continues to advance rapidly,

participants of different ages will inevitably have varied technological literacy. Researchers

should consider the impact this might have on their results and what they are seeking to

learn from the study.

• Diversity in gender, race, and ethnicity. User study participants should be recruited to

reflect the population as a whole (see Palmer and Burchard [133]). As with the prior items

in this list, participant populations that are not representative can affect the usefulness of

the results.

Most importantly, researchers must recognize in any publications the shortcomings of a

participant population. Demographic and other relevant information about participants can help

clarify what these gaps might be and allow for critical reflection on whether this could have affected

any results.
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2.6 Classifying XR for HRI

To help advance characterizing VAM-HRI systems, we introduce a Tool for Organizing

Key Characteristics of VAM-HRI Systems (TOKCS) [15]. TOKCS builds off work from

the Interaction Cube [134], discretizing its continuous scales and adding new key characteristics for

classification. The tool is applied to the 10 workshop papers from the 4th International Workshop

on VAM-HRI [12] to validate its usefulness within the growing subfield. These classifications help

inform current and future trends found within the workshop.

The Interaction Cube uses three dimensions to characterize VAM-HRI work: the 2D Plane

of Interaction to represent interactive design elements and the 1D Reality-Virtuality Continuum

from Milgram to characterize the environment. The first two dimensions of the Interaction Cube

are defined by the Plane of Interaction, which captures both (1) the opportunities to view into

the robot’s internal model, and (2) the degree of control the human has over the internal model.

The third axis of the Reality-Virtuality Interaction Cube illustrates where an MRIDE falls on the

Reality-Virtuality Continuum [135].

TOKCS consists of characterizing VAM-HRI systems with: Anchor Location {User, Env,

Robot}, Perceived Manipulability {User, Robot, None}, Increases Expressivity of View (EV) {0,1},

Increases Flexibility of Controller (FC) {0,1}, Increases Complexity of Model (CM) {0,1}, Milgram

Continuum {AR, AV, VR}, Software Description, and Hardware Description.

2.7 Future Work

The field of augmented reality for human-robot collaboration is vast. One can examine the

suitability of various AR technologies for an HRC task, the design of the AR interfaces, the user

experience, the comfort, and the safety. We can ask questions about what humans are capable of,

how the human and the robot can work together or separately, how much the human should be

asked to do, or how they should be asked to do it. Alternately, we can ask questions about what the

robot can do, how the robot should be instructed or programmed, and what levels of tasks it can
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perform. At a system level we can design systems that seamlessly integrate a human, robot, and AR

device; we can examine behaviors of systems in all kinds of environments, indoors and outdoors; we

can evaluate how well the systems function either remotely or in situ. The 2020 Robotics Roadmap

[136] assembled by a consortium of universities in the US lays out some specific current challenges

for human-robot interaction, including accessible platforms, datasets, and evaluation. All of the

works presented here take various perspectives on these questions and more. However, as with all

research areas there is still much to explore. Here we will touch upon a few key areas that are

calling for innovation and improvement.

In many ways, the field will continue to evolve with the maturation of augmented reality

technology, including next generations of head-mounted displays, improved handheld AR, and

possibly even innovations to projection-based AR. As recounted in Puljiz, Stöhr, Riesterer, et al.

[29], issues with segmentation demonstrate the need for improvement in AR capabilities with regard

to skin color, limb, and gesture recognition. AR must be able to work in all kinds of environments

regardless of lighting, background, or the user’s skin color in order to be effective. Furthermore, in

Kästner and Lambrecht [32] the main limitations are from constant visualization of real-time data,

especially the laser scan data for position and obstacle tracking. These difficulties demonstrate the

current processor and visualization limitations in AR technology.

AR technology has also been described as bulky [45], cumbersome [137], and having a limited

field of view [26], [34], [57], [138], [139]. All of these issues present opportunities for improvement of

the AR technology itself.

Collaboration of HRI researchers with those developing cutting edge user interfaces should also

be emphasized. In order to obtain accurate and meaningful results from user studies, AR interfaces

must utilize established principles of design for accessibility and functionality. In Stadler, Kain,

Giuliani, et al. [38], the authors suspected that because of an excess of detailed information provided

through AR, users actually took more time to complete a task that should have been faster with the

help of the AR display. Questions such as What is the appropriate level of information to provide to

someone performing an AR-assisted task? could be asked of a UI designer and incorporated into
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future work.

2.7.1 Robots and Systems Designed to Be Collaborative

The works included in this review typically utilize one robot (ground-based, robotic arm,

aerial, underwater, or humanoid) in collaboration with one human. The robots are designed for a

variety of purposes - to be universal manipulators, drive over smooth or rough terrain, or easily

navigate in a three-dimensional space. But not all of these robots are designed expressly for the

purpose of working in close collaboration with humans. Some were chosen based on their ease of

manipulation in a programming-by-demonstration task or their safety features. However, what

happens when we first take into account the possibility that a human might be working in close

proximity? What kinds of features can we innovate to ensure the person’s safety as well as ensure

that the robot completes its task? How might this robot behave? And what might this collaborative

environment look like in different environments?

2.7.2 Humans as Compliant Teammates

Much work exists that explores the role of the human as the director, manager, or overall

controller. But what if we turned this idea on its head and made the human a vital component

on a robot-driven team? What if AR was utilized to direct one or more humans in a collaborative

task with one or more robots? What if we were able to easily expand past the currently typical

robot-human dyad, which the vast majority of the works surveyed here involved?

Furthermore, we are continuing to think of these as human-robot teams. The goal is not to

replace human workers altogether, but to utilize the strengths and intelligences of both humans and

robots to increase productivity and efficiency. How can we make both humans and robots more

productive by teaming them together? As Reardon, Lee, Rogers, et al. [62] point out, we want

to “influence the human’s model of the robot’s knowledge and behavior, and shape the human’s

performance. In this way, we treat the human and robot teammates as peer members of the

cooperative team, and seek to influence each through information communication.”
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2.7.3 Evaluation

In Section 2.5 we summarize different methods of evaluating a technology and measuring

improvements. However, it is also obvious how much room for innovation there is in this particular

area. There are very few standardized, validated, and widely used instruments. Pick-and-place

and other manufacturing-related tasks are also prevalent in the literature, yet few evaluation

methods are alike, making it difficult to compare across different studies. Greater collaboration

among researchers could yield some semi-universally accepted evaluations for typical AR for HRC

tasks, such as teleoperation (both remote and in situ), aerial robot piloting and communication, or

pick-and-place tasks.

2.8 Conclusion

We are thinking ahead to a future when robots will be able to plan and execute even more

efficiently and when augmented reality is an unobtrusive and fluid method of communication.

Augmented reality will only continue to mature into a more accessible technology, and its role in

human-robot collaboration can become much more impactful and relevant to HRI. Specifically, with

visual and graphical communication delivered via AR, we can provide a human teammate with

information about spatial ownership. These developments lead us to ask whether AR can be used

to truly help keep humans safe when working around autonomous robots. We explore this deeply in

Chapter 3.



Chapter 3

Human Non-Compliance with Robot Spatial Ownership Communicated via

Augmented Reality

3.1 Introduction

Due to a confluence of technological availability and utility, humans and robots are increasingly

operating in close proximity to each other. The current state of safety in human-robot collaborative

and cooperative collocated tasks generally revolves around protecting the human from any contact

with the robot, using physical barriers and sensors to pause robot operation in the vicinity of humans.

This is oft realized as robots installed within physical cages or within fences in a manufacturing

environment, or as ground robots in a well-structured warehouse environment that stop when a

human approaches wearing specially instrumented clothing. While effective at preventing negative

interactions, these approaches tend to be inefficient and cause frustration.

Research on increasing predictability and interpretability of quadcopter robots by collocated

humans [18], [41], [140], [141], in addition to work that predicts human movement [142], tends

to assume that a robot should always defer or conform to human preferences independent of the

rationale behind them. However, the practical alternative of expecting the human to conform

to the robot’s movements or demands is less explored. With increased deployment of robots in

established processes within warehouse, manufacturing, and even space environments, we must find

safe, efficient, and robust ways of collaborating with them.

This work surfaces insights about human compliance and non-compliance with robot instruc-

tions for spatial ownership as delivered via augmented reality in a collocated environment with
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Figure 3.1: View through the HoloLens from Home. Eight bins contain task components, a 3x5 grid
indicates spatial ownership, and bin labels are selected to request access. Shown is a path to Bin 4.

Figure 3.2: Looking towards Home in the ARHMD during the trap scenario (no return path) in the
Shared Space condition.
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important safety implications. These insights are gathered from an experiment where human and

robotic agents held ownership over different areas of a warehouse floor. We designed and imple-

mented the FENCES (Facilitation of Efficient Nonverbal Collocated Environment Safety) System to

enable this interaction. FENCES enables a user to request permission from an autonomous robot

to traverse the work floor to reach bins containing parts needed for an assembly task. The robot,

an autonomous free-flying quadcopter that is conducting an inventory task, gives permission by

giving the human temporary ownership of parts of the floor indicated by hologram coloration (see

Figure 3.1).

We investigated user behavior and compliance with respect to the FENCES system through an

Institutional Review Board-approved, between-subjects study with two conditions: (1) a shared-space

condition where the human and robot occupied the floor concurrently, and (2) a turn-taking condition

where the human and robot performed their tasks sequentially, with only one of them allowed on

the work floor at a time. The main contributions of this work are our findings surrounding human

compliance and the justifications they provide for non-compliance and the subsequent identification

of critical design considerations for future AR-based safety systems to incorporate, with implications

for safety, trust, and cognitive load.

3.2 Related Work

The FENCES system and the experimental design in this work are based on insights synthesized

from collections of research within the multiple interconnected themes of communication, safety,

augmented reality, and human-robot interaction, expanded upon in the subsections that follow.

Communication of Information in AR. McIntire et al. [143] find that stereoscopic 3D

displays have equal or superior information communication performance as compared to non-stereo

(2D) displays the majority of the time. Augmented reality (one form of stereoscopic 3D display) is a

preferable option due to its dynamic visualization capabilities, non-obstruction of the visual field,

and relative ease of use. Szafir and Szafir [144] indicate that most past research on human-robot

interface design has centered around situational awareness and user control. While our system
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provides situational awareness in terms of spatial ownership, we look beyond control and towards

back-and-forth communication between the human and the robot.

AR for Human-Robot Communication. A rich corpus of work on use cases and

experiments exists regarding using AR for human-robot communication [18], [33], [42], [61], [63], [71],

[74], [80], [89], [131], [140], [141], [145]. Many systems are designed to improve communication from

the robot to the human, such as providing insight into motion intent [18], [71], [140], assistive

control predictability and legibility [89], aiding teleoperation [33], improving control handovers for

autonomous vehicles [145], and using AR-assisted robot gestures [63]. Other systems exist that

facilitate communication from the human to the robot, including programming or otherwise

adjusting the system [42], [74], [80], [131], teleoperation [33], providing boundaries to the robot [41],

[61], or functioning as a team [146], [147]. While our work builds on this growing body of research,

we specifically address human compliance with a communicative system as it relates to safety.

AR and Safety. AR is increasingly used to improve worker safety in a variety of environments

[148], [149]. Tatić and Tešić [150] presented a case study using AR to improve safety in an industrial

environment by providing virtual safety instructions and other information. AR-equipped hard hats

are also increasing in prevalence, indicating there is growing acceptance of using AR in high-risk

environments [151], [152]. Our work leverages these findings and techniques in spaces containing

humans and robots.

AR for Human Safety in Shared Spaces with Robots. A system from Choi et al. [153]

provided safety signals in the form of a green, yellow, or red dot for low, medium, and high risk

of danger in the corner of the user’s field of view. Makris et al. [73] also shaded regions of the

workspace in red to denote the robot’s space or green to indicate the operator’s safe working area.

In practice, for our system we found that users had difficulty distinguishing between yellow and

green holograms, leading to our use of blue instead of green, but maintaining the overall principle of

using color to denote ownership or imply safety.

Some primary applications for our findings include manufacturing and fulfillment centers.

There are indications that humans working in close proximity to robots at Amazon Fulfillment
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Centers might alter their workflow to accommodate or support the work of their robot teammates

[154], prompting the authors to ask how AR can further facilitate these human-robot teams. Amazon

has already initiated work on this front, as evidenced by the existence of a patent on an AR display

for fulfillment center workers [155], [156].

In this work, we utilize augmented reality to provide both a communication modality and

spatial ownership information for a person working collocated with an aerial robot and draw

conclusions related to human compliance and safety.

3.3 The FENCES System

The FENCES system includes a Microsoft HoloLens 2 augmented reality head-mounted display

(ARHMD), a Parrot Bebop 2 quadcopter robot, a Vicon Tracker motion capture camera system

for tracking the robot and the user, and a computer performing sensor fusion, state management,

and robot control. In the component descriptions below, the term “user” refers to the human

participant.

FENCES was designed as a test bed for analyzing human behavior while interacting with AR

and a collocated robot. Within the system, a user can request permission to traverse a controlled

space in order to reach a specific goal location. Through the ARHMD, the user can see who has

ownership of the spaces on the floor: the robot, themselves, or no one.

3.3.1 Mobile Robot: Parrot Bebop 2

The Parrot Bebop 2 quadcopter robot is an agile aerial vehicle approximately 330mm wide

and 90mm tall. In our experimental setup, it flies 1 meter over the ground and emits a fairly

loud noise (∼70dBA at 1m) when airborne. Its blades are unprotected by guards, increasing its

imposition on participant safety.
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3.3.2 Microsoft HoloLens 2 ARHMD and User Interface

The Microsoft HoloLens 2 is capable of projecting images and text in the wearer’s field of

view. The user interface was designed in Unity [157] and consists of the following features, some of

which can also be seen in Figures 3.1 and 3.2: (1) A large 3-by-5 grid on the floor, with the 8 bins

and table serving as boundaries. (2) The 1.5 x 1.5 meter grid squares are colored red, yellow, or

blue, depending on whether they are “owned” by the robot, no one, or the human, respectively. (3)

Billboards above each bin are labeled with a corresponding number and always face the user. They

can be selected using a HoloLens “air tap” to indicate a user request. Audio feedback is provided

when a bin/billboard is selected (“Bin [number] selected.”). (4) A “Home” billboard hovers above

and behind the home base table. (5) Text confirming completion appears when the experiment has

ended. The ARHMD is the sole mode of communication between the user and the system. The user

initiates a request to approach a bin by selecting its billboard, and the system may give permission

to traverse the floor, indicated by shading the grid squares in blue that the user is permitted to

enter.

3.3.3 Experiment Manager and Experimenter Interface

All of the robot goal locations, floor color configurations (and thus user access routes), and

anticipated bin selections are predetermined by the experimenters and implemented as sequentially

reachable states in the system. The states have transition criteria based on specific conditions being

met: user location, robot location, and bin request.

3.4 Experiment Design

We designed this IRB-approved experiment (n=20 ) as a between-subjects study with two

conditions. Participants were assigned pairwise randomly to conditions: odd numbered participants

were randomly assigned a condition and the following even numbered participant received the opposite

condition. Pairwise randomization is an unbiased assignment mechanism to ensure balanced cases
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when there is a guaranteed pair [158]. We recruited 22 participants, but two trials were discarded

due to issues with the motion capture system. The participant population drew from students

at our university and was 25% female, 5% nonbinary, and 70% male. On a scale from 1 (“Never

interacted with”) to 5 (“Extensive experience with”), average experience across participants was 3.1

for robots and 2.4 for AR.

We deployed FENCES in an experimental flight space lab arranged to replicate an assembly

environment with eight distributed parts bins along east and west sides (Figure 3.1). The task

space was approximately 8m x 12m. A table for the user’s workspace was at the south end, deemed

“Home Base” for the human. Participants received an orientation at this table, which also contained

the assembly workspace and instruction booklet. The experimenter and control equipment were

behind protective netting to the west of the table.

After signing the consent form, participants read one page of instructions describing the

experimental task. The activity involved constructing a small assembly with Mega Bloks according

to a printed booklet of step-by-step instructions with words and photos (see Figure 3.3). They were

instructed to collect the blocks from the bins in a strict order from the bins and told that they

should only walk on the blue areas in the grid. While the yellow and red areas of the grid were

functionally similar for the human (areas not to walk across), the red areas were owned by the robot,

while the yellow areas were not assigned ownership. Participants wore the Microsoft HoloLens 2

ARHMD described in Section 3.3.2, which provided the interface for users to request permission

from the robot to traverse the space and obtain access to particular parts bins (see Figures 3.1

and 3.2). Simultaneously, the quadcopter robot flew about the room, stopping at bins to simulate

inventory checks.

The two conditions were designated “Shared Space” (SS) and “Turn-Taking” (TT). In the SS

condition, the participant and the robot were permitted to work in the grid area simultaneously, in

non-overlapping regions of the space. The robot never returned to Robot Home, a red, robot-only

location at the north end of the grid analogous to the human’s “home base”. The entire task took

approximately 15 minutes to complete in the SS condition. In the TT condition, the participant



62

alternated with the robot occupying the floor space; while the robot conducted its inventory route,

the participant was required to stay in their respective home base, and while the participant was

collecting items from a bin and traversing the grid, the robot hovered at Robot Home. After each

inventory excursion, the quadcopter returned to Robot Home via the same general path by which

it had departed. Since the robot and the participant were never on the grid at the same time,

the duration for the entire task increased to approximately 30 minutes. In both scenarios, the

“ownership” of the grid squares (robot, human, or neutral/unowned) was communicated to the

participant using the virtual grid described in Section 3.3.2 and pictured in Figures 3.1 and 3.2.

These conditions were chosen to investigate behavior in two different yet equally relevant

situations: one where the spatial ownership rationale was more recognizable (Shared Space) and one

where the spatial ownership rationale and associated safety concerns were less obvious (Turn-Taking).

Participants were not provided explicit explanations in either condition about why certain regions

were permitted or prohibited, only what the colors denoted. Because we were investigating behavior

with respect to the floor ownership as designated in AR, we do not compare their behavior to an

AR-free condition. Further, without any indicator of spatial ownership or a significant deviation

of the quadcopter’s behavior, travel through the space would have been prohibitively unsafe for

participants.

Immediately after the task ended, participants answered verbal questions about their experience

in an interview with an experimenter. They were asked about their thoughts and behavior during

the experiment, as well as whether they perceived any inefficiencies and whether they felt unsafe.

Finally, they responded to a survey consisting of Likert (5-point scale) and free response questions.

3.4.1 Land Scenario

In both conditions, the robot landed on the workspace floor approximately 60% of the way

through the experiment. This scenario was designed to reduce the perceived risk involved in the

shared space condition, since the robot was not currently flying, potentially tempting the participant

to disregard the floor ownership indicators and to return home via a more direct route. In the TT
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(a) An example of the
instructions provided.
Each appeared on sepa-
rate pages for clarity.

(b) The completed as-
sembly of multicolored
MegaBloks.

Figure 3.3: The task (a) instructions and (b) final assembly.

condition, this also served to allow the experimenter to quickly replace the robot’s battery with

minimal disruption to the experimental timing of quadcopter behaviors between conditions.

3.4.2 Trap Scenario

Partway through the experiment, the participant requests access to Bin 4 and access is granted

(Figure 3.1). Once the participant arrives at Bin 4, only the grid squares along the northern edge

remain blue while the rest of the workspace floor turns red, effectively eliminating their route back

to Home Base (Figure 3.2). The system then begins a 60-second timer, after which the path back to

Home Base will reappear. The quadcopter hovers adjacent to Bin 1 in the SS condition and hovers

at the Robot Home in the TT condition.

3.4.3 Hypotheses

Through the system and experiment described above, we test the following hypotheses: H1:

Participants will feel safer in TT than in SS due to the reduced proximity to the quadcopter. This

will lead to increased deviations in TT, as participants will rely on potentially faulty reasoning

(i.e., based only on priors and directly observable features) when determining whether to follow the

system guidance. They will also spend more time on the grid in SS due to increased caution near
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the robot. H2: Longer or less direct routes will invoke more deviations from the blue path than

shorter or more direct routes. Thus, the land scenario and trap scenario will also invoke deviations

that participants will self-justify.

3.5 Results

3.5.1 Mixed Methods in HRI

For a model of mixed methods analysis, we consulted Veling and McGinn’s [159] recent

survey of 73 qualitative research papers in human-robot interaction, specifically the categories of

insights-driven, design, and hypothesis-driven studies. There is a substantial history of prior work in

HRI that use qualitative and mixed methods [160]–[162]. Using widely accepted qualitative methods

we gathered data in semi-structured interviews as well as textual analyses [159], and coded the

responses for repeated key words and themes.

3.5.2 Trap Scenario

A striking 25% of participants chose to walk through the red and yellow regions to return

to Home, disregarding the instructions they had received at the start to only walk through blue

regions. Three were in the TT condition while two were in the SS condition, showing similar rates

of non-compliance regardless of robot proximity.

• “I knew I was faster than it, so [wherever] it was gonna go I was gonna get out of dodge before it

could get there.” (TT)

In fact, in one case it seemed that because a participant had high trust in the robot’s consistency,

they disobeyed the floor colors to return to Home Base.

• “I can see that it’s safe, so [walked through the red].” (TT)

Eleven of the 20 participants became impatient or assumed a malfunction when the trap

scenario began and selected the “Home” button as a solution; 7 participants considered requesting
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another bin to generate a path, such as one close to Home, or Bin 4 again (the bin where they were

trapped); 2 participants admitted that they considered going around the experiment area, outside

the grid entirely.

• “I did come close to wondering whether [to walk] around the outside because...nothing will be there...”

(TT)

When asked why their path back to Home disappeared, participants generally thought that

there was a software issue (n=7) or that the robot was claiming the area (n=9).

• “It seemed like there was a glitch so I broke the rule [and] went straight through.” (SS)

However, there was no significant correlation between participants’ reasoning about why the path

disappeared and their decisions about what to do, suggesting that all of the reasons provided warrant

consideration. Furthermore, we can see that when an autonomous system lags, users will not wait

patiently; instead they desire ways to work around the lag.

3.5.3 Safety, Efficiency, and Trust

One of the most remarkable results from this study was that all participants felt safe

during the experiment, with the exact same distribution across both conditions. Given

the statement, “I felt safe throughout the exercise,” all responses were either 4 or 5, with an average

of 4.7 (see Table 3.1). Furthermore, 7 participants mentioned the word “safe” in the interview before

they were asked whether anything felt unsafe about the experience. Two participants used the word

“safe” in their response to the question, “Did you find anything inefficient about this process?” One

participant (SS condition) believed the system was too safe:

• “It’s overly safe...there’s not enough risk involved.” (SS)

When asked if they thought anything was inefficient about the system, of the 20 participants, 17

identified inefficiencies, while 3 did not. One TT participant described a SS environment that would

be more efficient, but SS participants had suggestions as well:
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Table 3.1: Summary responses to select survey items. Parentheses indicate SS responses. 1 = Strongly

disagree, 5 = Strongly agree.

Statement 1 2 3 4 5

I felt safe through-
out the exercise.

0 0 0 6(3) 14(7)

I deviated from the
given path during
the exercise.

15(8) 0 0 1(1) 4(1)

I felt informed
throughout the
exercise.

1 1(1) 4(1) 7(3) 7(5)

• “There were...times where there was a yellow part that didn’t belong to anyone, and it still made me

go around.” (SS)

Participants also volunteered their thoughts about trust, sometimes combined with issues of safety

and efficiency:

• “...I trusted the robot to stay in its red areas.” (TT)

• “I trusted it. I think it was very safe at the cost of efficiency, I’d be comfortable with less safety if

possible.” (SS)

As presented in Table 3.2, participants in the SS condition felt that the robot was more fair than

those in the TT condition, suggesting a willingness to sacrifice safety for a perception of fairness.

As expected and required by the experiment design, participants were closer on average to the

robot in the SS condition (3.7 m) than in the TT condition (4.4 m), with p<0.0001 (Figure 3.4).

However, the self-reported feelings of safety showed identical data for the two conditions (Table

3.1), suggesting that participants felt as safe nearly 3 meters from the robot as they

did when it was waiting predictably in Robot Home.

Participants in the SS condition responded statistically significantly more positively to the

statement, “I thought the robot was fair,” (see Table 3.2), suggesting that the longer wait time in

TT implied a level of unfairness.

• ‘The robot thought its priorities were more important.” (SS)
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Table 3.2: Mean responses, by condition, to select survey items. *p<0.05

Statement Shared Space Turn-Taking

I thought the robot was
fair.*

4.0 3.1

I liked the way I inter-
acted with the AR de-
vice.*

4.7 3.8

I thought the robot was
very responsive to my
requests.

3.7 3.0

I thought the robot was
intelligent.

3.4 2.7

Participants further personified the robot and the system in some of their interview responses:

• “Sometimes you...had to...wait a little bit for it [the robot] to realize, ‘Wait, I don’t need that square,

I can give it up.”’ (SS)

• “It knew when I was on the field and when I wasn’t.” (TT)

We also noted how many times each participant checked the robot’s position by looking at it

while they were on the grid. Data shown in Figure 3.5 indicate with statistical significance that the

higher they perceived its intelligence, the fewer location checks a participant made. Repeated checks

for the robot suggest that the human is engaged in tracking the robot. As multitasking increases

cognitive load [163], this suggests that increasing the perception of intelligence can be a

powerful way to reduce cognitive load.

During the pre-experiment briefing, the experimenter interacted with participants on the

south side of the table located at Home Base, facing the grid. However, 4 participants chose to work

from the north side of the table with their backs to the robot and grid as they were constructing the

assembly. One participant chose to work from the west end of the table. This behavior (working

without view of the robot) is possibly another indicator of participant trust in the system.

A number of other interesting behaviors were observed. Despite being told to conduct the

tasks in the order provided in the instruction booklet, one participant in the TT condition attempted

to increase efficiency by gathering blocks from more than one bin per excursion, for example if the
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Shared Space

Turn-Taking

Mean Distance from User to Robot (meters)

Figure 3.4: Mean distance from the robot sorted by condition. Across all participants, mean distance
in SS = 3.7 meters, while mean distance for TT = 4.4 meters, p<0.0001.

following bin was also in the given path, as well as by trying to select future bins while he was on

the grid. Other participants tried to anticipate what side of the table the path would start from,

waiting on their predicted side, though frequently the path that appeared started from the opposite

side as predicted.

3.5.4 AR Interface

Despite having the same user interface across both conditions, participants in the SS condition

responded statistically significantly more positively to the statement, “I liked the way I interacted

with the AR device” (Table 3.2). They generally liked seeing everything that was in the AR view,

except for 1 participant who stated that the grid hologram obscured the robot, making it difficult to

see where the drone was, which he also said made him feel less safe. (This participant still responded

with 4/5 to “I felt safe throughout the exercise.”) Participants consistently made the following

suggestions for other information to share in AR: robot intent or priorities (n=8), a timer showing

remaining wait time (n=4), task instructions (n=4), and an indicator for the robot location (n=2)

were some of the most popular responses.
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“I thought the robot was intelligent.”
1=Strongly Agree, 5=Strongly Disagree

Figure 3.5: Relationship between participant response to the item, “I thought the robot was
intelligent” and how frequently they looked for the robot while on the grid (p<0.05).
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Participants had a number of suggestions for additional information they would like to see

in the display. By showing the red robot-owned regions, we intended to convey the current and

near-future movements of the quadcopter. However, over half the participants (n=11) desired even

more insight into the robot’s intent, priorities, and planning, with which they felt that they could

make their own decisions about how to move about the space. However it is unclear whether, with

this additional insight, they would continue to stay within the blue grid squares or feel empowered

to make their own, potentially deviant, choices for movement around the space. This information

could be useful when designing such systems to know what kind of deviations to expect

and how to prime users to use the systems as intended.

3.5.5 Support for Hypotheses

The first hypothesis addresses efficiency between the two conditions. However we found

no significant difference after comparing the time SS participants spend on the grid to the TT

participants’ time. We also analyzed the mean participant distance from the robot as compared

to participants’ perceptions of safety. Looking at these data in concert, we see that despite SS

participants being closer on average to the robot throughout the experiment (Figure 3.4), they were

just as likely to report that they felt safe throughout (Table 3.1). While 75% of participants stayed

within the blue regions throughout the experiment, the remainder deviated by walking through the

red and yellow regions during the trap scenario. Considering this is a safety-critical system, we

view 25% non-compliance as an alarming result. Of those 25%, one participant also cut corners on

circuitous routes and took a more direct route back to Home Base in the land scenario. Participant

deviations occurred in both SS and TT conditions, and some participants felt the grid ownership

guidance was unnecessary. The data partially support H1 in that participants use faulty priors to

justify feelings of safety, but there were no differences in perceived safety across the conditions. The

data support H2.
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3.5.6 Limitations

Experimenters were present in the same room as the participant for reasons of safety and

practicality, enabling participants to communicate with the experimenters at will, which happened

on three occasions. In those instances, a preplanned response was given that did not offer any

information about the task or system. Additionally, the motion capture capability varied. Two

participants were more difficult to track than others, requiring experimenter intervention to advance

the system to its next state. This induced a level of variability in responsiveness to built-in triggers,

such as floor colors changing upon the participant’s return to Home Base. Participants also had

mixed success learning the HoloLens “air tap” gesture, possibly affecting their impressions of the

system. This work was also limited by the participant population: all were STEM majors; 70%

identified as male.

3.6 Discussion and Findings

In our collocated, physically unprotected environment, participants had to rapidly draw

conclusions about the robot’s current state, its intentions for the future, and the trustworthiness

of its communications. One of the most surprising results was the demonstrated and reported

overwhelming feelings of safety by all participants. As explored in Section 3.5, all participants

shared that they felt safe throughout the experiment, some explicitly stated that they trusted the

robot to stay in its red areas, and they generally felt informed throughout the exercise (Table 3.1).

This resulted despite not receiving any explanations about the robot’s trustworthiness or reliability,

indicating that people often assume they are sufficiently aware of the risks even when they have

not been provided with this information. Prior work has shown that humans tend to over-trust

robots, even in high-risk situations and when they have experience with the robot misleading them

[164]. Our work adds to the evidence of the potential to over-trust autonomous systems and leads

to Finding 1: Humans working in close proximity to robots appear willing to sacrifice

some amount of safety to achieve increased efficiency.
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Lee and See [165] reported that written descriptions induce high levels of initial trust, and

that trust in automation begins with faith, then dependability, and finally predictability. Our

system initialized trust with the written task description and demonstrated consistency until the

trap scenario; participants built on their levels of trust as the task progressed.

Research on trust and safety in high-risk situations contain some key ideas that are useful for

understanding the behavior of our participants. Although much of that work relates to trust in

people, we observed evidence that participants were personifying the robot. Furthermore, some even

viewed it as intelligent (Figure 3.5). Pidgeon et al. [166] define critical trust as a “practical reliance

on other people combined with a skepticism of the system” [167]. Prior work also demonstrates

that it is possible to trust people but not trust dangerous situations; in our experiment, as the trap

condition occurred, participants had established some level of trust with the robot, however the

system behaved unexpectedly. Five participants then trusted the robot to continue behaving as it

has been, simultaneously distrusting the floor colors, ignoring them to return home. Four other

participants trusted the system to allow them a path back eventually and waited for this to occur.

Further evidence indicates that “trust and distrust are unlikely to lie on the same dimension” [167].

We can conclude that an optimal model of safety requires both critical trust and distrust, leading

to Finding 2: Users desire insight into the decisions and priorities of an autonomous

system to help them understand the reasoning behind its actions, decrease frustration,

and help them make their own decisions about how to act during uncertainty.

In human-machine interactions that are facilitated by an interface, it is the interface that

establishes shared expectations and trust [168]. The ARHMD and the AR visualizations play a

crucial role in the participants’ trust development. The virtual images and text are the only methods

the system possesses to communicate any information to the user; aside from the actual robot

behavior and any prior experience, almost all trust is derived via the ARHMD. By incorporating the

suggested features from the participant responses - such as robot intent, prioritization, or wait time

- trust and safety can be increased, which informs Finding 3: Increasing the perception of a

collocated robot’s intelligence could significantly decrease a worker’s cognitive load.
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3.7 Design Recommendations

Placing autonomous robots into a shared environment with humans introduces risks and

safety considerations. Our study has demonstrated that augmented reality is not necessarily a

clear solution to those problems; simply displaying spatial ownership does not dictate safety nor

compliance, especially when unexpected events occur. We conclude with recommendations for

collocated human-robot systems utilizing AR to aid communication, informed by our results and

findings:

Recommendation 1: Provide deviation warnings to deter self-justified rule-breaking that

could result in additional risk. Recommendation 2: Brief people about the robot’s abilities

and limitations as part of system training to mitigate intelligence and over-trust perceptions.

Recommendation 3: Include live visual information to improve real-time understanding of system

operation. Recommendation 4: Provide training on actions to take during uncertainty; enable

the system with corresponding capabilities.

3.8 Conclusion

The results of this study prompted us to ask whether and how we could apply these design

recommendations to other forms of human-autonomy teaming. With the expanding applications of

large language models (LLMs), we also saw important implications within chatbot-based decision

support systems. Many questions continue to arise around how to encourage responsible use of

LLMs, and we wanted to investigate how to apply the results of this study to answer those questions.

We present this next study in Chapter 4.



Chapter 4

Characterizing Users of Large Language Model Chatbots

4.1 Introduction

Large Language Models (LLMs) are already widely employed by users with a range of expertise

in addition to a range of understanding in how these models function. Applications that leverage AI,

and specifically LLMs, exist across a range of professions and industries, including law, healthcare,

retail, finance, real estate, and education (see examples such as [169]–[179]. Given the significance

and impact of tasks performed in these fields, it is imperative that the LLM tools employed are

both accurate and effective.

However, it is well known that LLMs can behave unexpectedly. Some responses are beyond

the control of the designers, such as so-called “hallucinations” or even “fabrications” [180]. Models

explicitly prompted to persuade or mislead human participants have been shown to exhibit moderate

success [181]. While LLMs are rapidly evolving, it remains essential that human users of these systems

are aware of system limitations. This is especially important for use cases in which a system is offline

(without access to the Internet for verification), such as many robots, anyone in communications-

denied environments, and human-autonomy teams conducting deep space exploration. With the

recent increase in the combination of LLMs with robotics (e.g. [182]–[185]), there is a particular

need for appropriate calibration of human trust in these systems.

Evidence shows that humans tend to overtrust autonomous systems, even in emergency

situations and when they have witnessed misinformed behavior from the system previously [164].

Experienced nurses overtrust an autonomous decision support robot [186], demonstrating that even
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in safety-critical professions such as healthcare, highly trained individuals struggle to overcome this

phenomenon. We see similar patterns with LLMs, compounded by users’ poor understanding of

how these models work. For example, Zamfirescu-Pereira, Wong, Hartmann, et al. [187] explore

the challenges for non-expert users of an LLM-based chatbot. In their study, users consistently were

not sure how to interact with the chatbot or what kinds of functionality to expect. At some point

in the study, each participant asked the researchers, “Why did it [the chatbot] do that?” indicating

a lack of ability to critically reason about the chatbot’s generative processes. Other recent work has

shown that users do not know how to best prompt and utilize LLM chatbots or when to trust their

responses, in addition to other concerns about equitable access and use [187]–[189].

The contributions of this study guide designers in creating systems that afford users informed,

transparent decision-making, avoiding potentially dangerous overtrust of autonomous chatbot

systems. In this work we investigate user trust of LLM output through a study using 2 domain-

specific chatbots operating in one of three different warning conditions: a baseline condition where

the chatbot shows an initial disclaimer about its abilities; an embedded condition where the chatbot

provides caveats about its knowledge within responses; and a question condition where the chatbot

asks the user if they identified any errors in the information provided.

Our research questions are: (1) How, if at all, do the chosen interventions prompt users to

validate or verify the information provided by the chatbot? (2) How do the different interventions

and interactions affect user trust of the system?

4.2 Related Works

A systematic review of human-computer interaction literature on trust in AI systems by

Bach, Khan, Hallock, et al. [190] highlighted the wide range of definitions of trust and factors that

existing studies measure. While a vast area of research focuses on explainable AI (e.g., [191]–[193]),

explainability is only one method for trust calibration. Prior work has shown that people want

more information about autonomous systems so that they can make their own decisions. In work by

Luria [194] on recommender systems, the author provides guidelines for the design of transparent
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algorithms. Importantly, participants desired a significant level of knowledge and control over what

they see and how their data are used. Furthermore, Luria found that “participants wanted the

data itself, so that they could make their own judgments” [194]. This was echoed in [3], where

participants stated that they wanted more information about how the robot was making decisions

so that they could in turn decide how to behave. The work presented in this paper contributes

to our understanding of how this could be accomplished in a chatbot modality. Meanwhile we

remain aware that people tend to overestimate their abilities, particularly in areas where they are

inexperienced [195]–[197]. Thus it can be difficult to assess what level of information or transparency

is appropriate for a user interface.

Konstantinou, Panos, and Karapanos [198] enumerate multiple reasons why individuals might

be susceptible to misinformation, including cognitive ability, information literacy, psychological

state, and contextualization. Their work builds on others that show that certain kinds of nudging

can be used to combat the spread of misinformation on social media [199], [200]. Yet it remains

unclear how this might transfer to LLMs, particularly as users often expect instant gratification

when using them [201].

Lee and See [165] extensively discussed the intricacies of trust in automation and make specific

recommendations that highlight the importance of context, including training. They also emphasize

that automation should be designed for “appropriate trust, not greater trust.” Benda, Novak,

Reale, et al. [202] present multiple factors for designing systems to foster appropriate trust and for

measuring whether users have calibrated their trust appropriately. Recent research has explored

different types of cues for alerting human collaborators of their overtrust of AI [203], [204], testing

four “Trust Calibration Cues”: a warning symbol, a sound cue, a displayed warning message, and

an animated drone image. The verbal cue, displayed as text on the screen, achieved the best trust

calibration. Our work aims to extend some of these principles to chatbots.

Another method for appropriately calibrating user trust is to induce friction into the user

experience. Friction can be defined as “points of difficulty encountered during users’ interaction

with a technology” [205]. Designers traditionally aim to reduce friction for an improved user
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experience; however, intentionally inserting points of friction can promote reflection and improve

trust calibration. For example, studies have explored methods for incorporating warnings about

misinformation on social media platforms [206]. Importantly, the authors acknowledge that the

warnings must not be so disruptive as to prevent the user from engaging with the platform but

also obvious enough to provide the necessary information. Findings suggest that these kinds of

“flags” help to appropriately calibrate trust [207]. Other work has found that some induced friction

becomes easily ignored as users habituate to repeated warnings [208]. We incorporate the concept

of friction into this work with our “question” condition, wherein the chatbot asks the user if they

see any inaccuracies in its response.

Buçinca, Malaya, and Gajos [209] examined participants performing an AI-assisted decision-

making task. The conditions of interest consisted of “Cognitive Forcing Functions”: on demand (the

AI suggestion was only shown with a special button click), update (participants were forced to make

a decision before seeing the AI result), and wait (where they had to wait 30 seconds before seeing

the result). While participants in the Cognitive Forcing Function conditions performed better at the

tasks compared to the simple explainable AI baselines, they still performed worse than the AI alone,

demonstrating that the overreliance on AI remained. This shows that while these interventions are

promising for assisting humans, more work is needed to develop effective calibration interventions.

In particular, research shows mixed results in encouraging critical thinking among chatbot users

[210].

While much work has been done to increase user acceptance of chatbots [211], more work

is needed to look at potential over-trust of these systems and negative impacts on human critical

thinking. Current state-of-the-art chatbot-style LLMs like Google’s Gemini and OpenAI’s ChatGPT

provide some basic warnings about model limitations when a user first opens the application (see

Fig. 4.1). Based on the findings of the literature above, we anticipate that there are significant

limitations to using this kind of minimal, up-front intervention. A similar warning serves as this

study’s baseline condition.

We chose our three experimental conditions based on existing warnings in popular chatbots
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Figure 4.1: The landing page for OpenAI’s ChatGPT provides suggestions for prompts as well as a
small disclaimer that ChatGPT may not be accurate.

as well as the friction and nudging principles described above. Two of our conditions were based on

existing chatbots that present users with a disclaimer on the opening page or that insert caveats

into their responses. We include a third condition that more directly prompts the user to think

critically about model outputs and limitations via a tangible request.

4.3 Methods

4.3.1 Experiment Design

We conducted an ethics board-approved between-subjects study with three experimental

conditions. The conditions (detailed further in Sec. 4.3.2) included a baseline warning at the

beginning of the session, an embedded caveat given after each chatbot response, and a question

prompting the user to think about the accuracy of each response. Each participant completed

a writing task and a bridge design consulting task; we counter-balanced which task participants

completed first and found no effects of task ordering.

At the beginning of the session, participants read and completed the informed consent form.

They then completed the first task (either writing or bridge task) and the accompanying survey

questions (see Section 4.3.3). For both tasks, participants followed a step-by-step questionnaire

(accessed via a web browser) with all of the instructions for completing the tasks. Included as part

of the instructions were requirements that their responses be accurate as well as fast. To encourage

this, we included a timer on each subtask page that automatically began when the page was opened.

Following each task they completed a brief survey. Finally, we conducted a semi-structured interview
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Condition Detail

Baseline Warning at the beginning of the session

Embedded Caveat given after each chatbot response

Question Question prompting the user to think about the
accuracy of each response

Table 4.1: The 3 conditions for both chatbots.

about their experience.

We recruited 15 participants from the student population on our campus. Genders represented

included male (n = 9), female (n = 5), and non-binary/third gender (n = 1). Seven of the 15

participants said they had used an AI-based chatbot “a few times” or had “never used an AI-based

chatbot before”. The other 8 participants said they use an AI-based chatbot “about once a week”

(1), “a few times per week” (4), or “daily” (3). Participants’ areas of study included business, law,

geology, psychology, aerospace engineering, mechanical engineering, environment, and computer

science. Six of the participants were graduate students and the remaining 11 were undergraduates.

We assigned participants to conditions using a method based on pairwise randomization, a way

of assigning conditions to reduce bias, as long as there is a guaranteed pair [158]. In our case, we

modified it for a triple, such that the first participant of the triple was randomly assigned one of

the 3 conditions, then the second participant of the triple was assigned one of the 2 remaining

conditions.

4.3.2 Chatbot Design

We designed two domain-specific AI-based chatbots that participants were instructed to use

for the experimental tasks. For the writing assignment, we asked users to write about an invention

of their choice from before the year 1800 with the help of the provided chatbot. The subtasks were

to: (1) choose an invention, (2) write a paragraph about the history of the invention, and (3) write a

paragraph about the invention’s impact on the world. We chose this task because of the ubiquitous

use of LLMs by students for completing coursework [212], whether condoned by their instructors or
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Figure 4.2: An example of the writing chatbot used for the writing task in the Embedded condition.
A statement about the chatbot’s limitations is included in its response.

not.

For the second task, participants were asked to act as a bridge design consultant, with the

assistance of a second chatbot. In the task instructions, they were told to use the chatbot as a

resource for necessary information. Similar to the writing assignment, the step-by-step questionnaire

asked them to complete 3 consecutive subtasks: (1) recommend an overall structure for the bridge,

(2) recommend a primary material for the bridge, and (3) suggest a general budget for the project.

We chose this task due to the increasing use of LLMs for business, particularly in consulting. In

such a situation, users may or may not be subject matter experts in the fields, but are being assisted

by AI [188].

Using the OpenAI API, we designed two separate chatbots, one for the bridge design consultant

task (the “bridge chatbot”) and one for the writing task (“writing chatbot”). We then modified

each chatbot to provide three different types of warnings about its limitations. The baseline (B)

condition included a preamble at the opening screen. The embedded (E) condition embedded a

caveat regarding its limitations within each response (see example in Fig. 4.2). Finally, in the

question (Q) condition the chatbot asked a question such as, “Is anything in this response factually

inaccurate?” after each response (see example in Fig. 4.3). The questions in condition Q were
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randomly chosen from a list of 8 different questions, to provide some variety for the response.

We used system prompts to insert both accurate and inaccurate information into the chatbots’

responses. The tasks were designed such that participants’ prompts relevant to each subtask would

elicit specific kinds of responses from the chatbots. For example, when prompted about inventions,

the writing chatbot would always provide an identical list of 10 inventions, as pictured in Fig. 4.2.

The bridge chatbot, when prompted about materials for bridges, would always provide the same two

tables of information, listing material properties of a limited number of materials. These properties

were not fully accurate, and a web search comparing the different grades of steel, for example, would

provide some clues to this fact.

The bridge chatbot was intentionally presented as a factual resource rather than as a system

for AI-assisted decision-making. Our system prompt was designed so that the chatbot did not to

make specific recommendations and only provided the user with information necessary for making a

decision. The system prompt for the writing chatbot provided some more flexibility in responses;

however, we prompted it to include inaccurate information when asked about the history and

impacts of the inventions (see Fig. 4.3).

4.3.3 Measures

During the experiment, we saved both the participant prompts and chatbot responses. We

also used the Clockify app to track how much time participants spent in the chatbot, the response

form, and the Internet browser or sites that they found via the search engine.

We were also interested in how the different methods of communicating the chatbot’s limitations

affect the participants’ trust in the system. We measured this quantitatively by having participants

complete the Multi-Dimensional Measure of Trust (MDMT) [213] after each of the tasks. The MDMT

is a validated instrument that was designed to measure human-robot trust in four dimensions (reliable,

capable, ethical, sincere). After completing both tasks, participants answered survey questions

about their major, prior experience with AI, and gender. Finally, we conducted a semi-structured

interview with each participant where we asked them about their experience using the chatbots to

https://clockify.me/
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Figure 4.3: An example of inaccurate information provided by the writing chatbot in the Question
condition. The chatbot was directed to state that any invention was inspired by the invention of
gunpowder, which is inaccurate. It follows its response with a question about the accuracy of its
contents.
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complete the tasks, whether they noticed any warnings or caveats provided by the chatbot, whether

and why they chose to validate the chatbots’ responses, how this compared to any prior experience

they had with chatbots, and other related questions. See the Appendix for more details about

interview questions.

4.3.4 Analysis

We conducted quantitative analyses on our coded results as well as a thematic analysis of

the data collected, a common analysis method for identifying and organizing common themes and

patterns in qualitative data [214]. For each participant, we coded the presence of behaviors of

interest such as whether they submitted incorrect information generated by the chatbot and whether

they copied text generated by the chatbot without substantially changing it (deleting was allowed).

For statistical tests, we use a significance level of α = 0.05.

4.4 Results and Discussion

While the experimental conditions did not elicit statistically observable differences in search

behavior or trust ratings, we find statistical evidence of two distinct behavioral personas that predict

user behavior. These personas independently correspond to (1) the length of their prompt inputs to

the LLM and (2) time spent searching the Internet for verification of LLM outputs. We discuss

these results and personas below in depth. Fig. 4.5 gives an overview of their distinct behaviors.

4.4.1 Two Chatbot User Personas

Participants spent varying amounts of time completing the tasks, conducting Internet searches

to validate chatbot outputs, and editing chatbot responses. In particular, we noted a stark difference

between those participants who spent more than 10% of their time (over 4.1 min on average)

searching for information in a web browser or reading information that they had found via a search

engine and those who spent less than 10% of their time searching on a web browser (including

those who spent no time searching), see Figure 4.4). These two distinct groups of participants also
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demonstrated significant differences in the lengths of their chatbot prompts. We observed multiple

differences between these groups, with substantial evidence supporting the emergence of two distinct

personas: Critical and Credulous.

Figure 4.4: This plot shows the percentage of their time that each participant spent searching on

the Internet. It is sorted by condition (B = Baseline, E = Embedded, Q = Question), showing that

condition did not correlate with search time. The horizontal line at 10% divides the Critical (>

10%) and Credulous (< 10%) personas.

We observed a balanced distribution of Critical and Credulous personas among the 3 conditions,

with 2/5 Critical participants in the baseline condition, 3/5 Critical participants in the embedded

condition, and 2/5 Critical participants in the question condition.

Critical users spent more than 10% of their time searching and spent significantly

longer on the writing task on average (M = 14.8 minutes, SD = 3.9), almost twice as much time

as Credulous users (M = 7.8 minutes, SD = 6.4), t(13) = 2.1, p = .027 (see Figure 4.6). Fisher’s
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Figure 4.5: A summary of the two chatbot user personas: Critical and Credulous.

Table 4.2: Persona Summary Data (Means)

Critical Persona Credulous Persona

Average % Time on Search 17.3% 3.3%

Writing Task Time 14.8 min 7.8 min p = .027

Total Task Time 28.0 min 20.0 min

Capacity Trust 3.91/7 4.91/7 p = .030

Average Words per Prompt 13.8 35.5 p = .018

% who included incorrect
information in writing task 0% 75% p = .007

% who did not alter
information in bridge task 14.3% 87.5% p = .010

% who said chatbots were
reliable in interviews 14.3% 75.0% p = .041

Figure 4.6: Percent of time spent searching vs average prompt length for each participant.
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Figure 4.7: Percent of time spent searching vs total time spent on the writing task for each
participant.
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exact test showed that Critical users were significantly more likely to spot incorrect information

shared by the writing chatbot and exclude it from their writing task responses (p = .007), as well as

significantly more likely to alter the chatbot-provided information on the bridge task (p = .010).

This means that Critical users ultimately provided better quality information in their

responses across tasks. They explained this behavior in various ways, for example, “Since [the

chatbot] says there might be a mistake, the second thing [I did] was make sure everything’s good

to go in Google... I guess I was more suspicious after I caught something, but I was still checking

details.”

The Critical persona sometimes used the chatbot output directly in their submitted response,

noting that they “went through [the paragraph from the chatbot] and was like, Actually I don’t

want this piece of [information] and then edited it from there.” There was no significant difference

in whether different personas copied and pasted responses from the chatbot in the writing task. Our

coding rules did allow for partial copying, for example selectively excluding chatbot sentences that

the participant deleted. This further confirms that even Critical participants who copied information

from the writing chatbot did so selectively, likely aided by the additional information they found

during their validation checks using a search engine.

Conversely, the Credulous persona rarely noticed incorrect information, stating that they

skimmed or read the beginning of the chatbot responses and deemed them good enough: “I read

the first sentence of the paragraph...and it sounded like it made sense, so I assumed that the rest

of it would be right too. And it was in paragraph form and it seemed right, so I just copied it.”

Another Credulous participant stated, “[It] had the little warning [that] I’m only a chatbot, I don’t

know if I’m always right. So I fact checked that [first] one and I was like, okay, I trust [it]...So then

I didn’t fact check anything from there.” While thinking about questionable information provided

from the chatbot (that the radio was inspired by their chosen invention), one Credulous user stated

that,“It wasn’t so un-credible [sic] that I didn’t use it.” Rather than only including information

that seemed credible enough, they had some unspoken threshold for exclusion that this information

did not meet, resulting in the inclusion of incorrect information in their response. The Credulous
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persona generally accepted information they were presented with and did not further

question chatbot responses, even when they might have suspected misinformation.

In addition to behavioral patterns, Critical and Credulous personas also differed in their

trust measures. We observed that the Critical persona (M = 3.7/7, SD = 1.1) displayed a

significantly lower Capacity Trust rating of the writing assistant chatbot than the Credulous

persona (M = 5.2/7, SD = 1.3), t(13) = −2.4, p = .030. When asked what could help them

trust a chatbot more, the Critical persona said they would “never” fully trust a chatbot. Fisher’s

exact test shows the Critical persona was also less likely to talk about the chatbots as “reliable” in

their interviews compared to the Credulous persona (p = .041). Even Critical users who said the

chatbots were reliable walked back their answers, for example, “just as long as you double check

and don’t take it as gospel truth.” One Critical participant drew this helpful metaphor: ”It’s not

that it’s less trustworthy than a random person telling you something. It’s just that that’s also

not super trustworthy information... You could almost get to the point of trusting it as much as

your neighbor...but you [shouldn’t] necessarily trust your neighbor’s knowledge of truss bridges

either.” The Critical persona also claimed that they would be more diligent if the stakes were even

higher, for example if they were “writing my dissertation or something like that,” but “in that case

the warnings would probably be less useful because I’d be more diligent on my own.” However,

there was not a significant difference between personas in the total task duration. A Credulous user

indicated that the time that the chatbot was taking to provide an answer actually increased their

trust that the system was producing a good response: “I was more likely to trust it because I felt

like the thing was actually putting in the work to create [the response].” This is consistent with

prior work showing that slower algorithms increase users’ perceptions of their accuracy [215].

In domains outside of their self-perceived areas of expertise, the Critical persona did claim to

rely somewhat on the chatbot’s information. They remarked that because they were not experts

in bridge design, they ultimately felt forced to rely on the chatbot whether they trusted it or not:

“I wasn’t sure that Google could give me anything better than a bot that seems pretty honed in

on...this specific issue. I thought that might just not be worth the time to go looking on Google.”
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Strikingly, Critical users wrote significantly shorter prompts for the chatbots

(M = 13.8 words/prompt, SD = 7.1) than Credulous users (M = 35.5 words/prompt, SD = 20.2)

on average, t(13) = 2.7, p = .018 (see Figure 4.7). Critical users’ prompts generally consisted of

shorter requests instead of the lengthy and detailed instructions common to Credulous users. Longer

prompts often included substantial text from the task instructions form, rather than brief, targeted

questions. This kind of prompting could be an indication that the Critical persona is parsing more

information themselves rather than expecting the chatbot to do so for them, while the Credulous

persona offloads this interpretation work onto the chatbot. Because of the functionality of LLMs,

prompt input can often overlook or remove many pertinent details yet still achieve a desirable

output result. Here we see evidence that prompt complexity is an indicator of how someone both

engages with and thinks about LLM output.

Critical users exhibited some investigative techniques, such as considering who the designers

of the system were (possibly indicating that a particular brand or company might garner more or

less trust) or testing the knowledge limits of the system: “One thing I noticed is...for the bridge

activity, it would only tell me about bridges...I [asked it to] tell me about frogs, [but it said] ’I only

know about bridges.’ ” Meanwhile, the Credulous user believes in their own abilities to

identify false information, saying things such as, “There weren’t any facts that needed to be

checked,” or “It directly gave me the answer so I felt like I didn’t even need to use a search engine,”

or “[It was] not like there were any hallucinations.” We see parallels between participants’ perceived

trust and use of chatbots in this work with the findings of Nelson and Lewis [216] about people

fact-checking the news media. In their study, participants believed in their own unique abilities

to “triangulate” information from multiple sources in a similar way that some of our participants

attempted.

4.4.2 Participants Ask for Sources

In their interviews, 9 participants (5 Credulous and 4 Critical) suggested that citing sources

or providing links would foster more trust, but they also implied that they would use these links
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and citations to actually validate the information. Three participants (all of the Critical persona)

claimed that one should never fully trust AI-assisted chatbot output. Some of the quotes from

participants who asked for sources or citations indicate their lack of understanding about how

LLM-based chatbots function. Participants wanted the chatbot to say, “Here’s where we got this

information,” and, “see if I misinterpreted it.” They even requested, “Just put hyperlinks into

its responses” so that “you can go check it on your own.” While these suggestions are worth

acknowledging when designing such systems, they are indicative of the lack of understanding that

our participants have of LLM-based chatbot functionality.

4.4.3 Chatbots Bias Responses

The results from the chatbots substantially narrowed and guided the responses of the partici-

pants in their tasks. For example, in the writing task, none of the participants chose to research an

invention that was not provided in the initial list of 10 identically ordered options provided by the

chatbot. In the first bridge subtask, we designed the chatbot to provide only 3 specific suggestions

for truss designs and to falsely state that the Warren Truss was generally used for vehicles while

the other 2 suggestions were generally used for railways. Only 2 of the participants chose a truss

structure that was not the Warren Truss. Both of these participants had a Critical persona and

were in the Question condition. Furthermore, for the second bridge subtask, the chatbot provided

two tables of information about bridge-appropriate materials. These tables both contained some

erroneous data that were intended to potentially mislead participants towards choosing Steel S235

instead of Steel S355. Only 3 participants correctly chose Steel S355, all of whom exhibited the

Critical persona. For the final bridge design consultant subtask, regardless of how participants

prompted the chatbot for budget information, the budget they were presented with remained

consistent. Four participants provided a budget that was not identical to the chatbot’s response,

and 3 of them had the Critical persona. Together, these results indicate how LLM-based chatbots

can funnel users towards a limited range of responses, whether maliciously or not.
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4.4.4 Limitations

One limitation of this study was the student population from which the participants were

drawn. It is possible that a different population might reveal additional personas and behaviors.

Furthermore, despite testing, the chatbots occasionally produced relatively benign unexpected

behavior, such as long lag time or unanticipated responses. Finally, we must acknowledge that while

we modeled both of these tasks on real world applications (a school assignment and a consulting

project), actual user behaviors may vary in the wild.

4.5 Summary, Recommendations, and Future Work

In our study we saw two chatbot user personas emerge; we labeled them Credulous and

Critical. The Critical persona writes shorter prompts, is generally wary of chatbot responses, and

uses external sources to verify information they are presented with, particularly if they have a

framework for doing so (as in the writing task). Their trust measure of the chatbot is lower, and

they are likely to claim that nothing would increase their trust of chatbots. When they lack the

appropriate background to judge the chatbot response, they do what they can, sometimes hedging

(for example, increasing the bridge budget estimate). Unfortunately, their skepticism does not

overcome all chatbot faults, and they still can fall prey to inaccurate information.

The Credulous persona is trusting, confident, and nonchalant. They have higher trust ratings,

they rely on their own knowledge and awareness to find mistakes in chatbot responses, and they

prioritize speed over accuracy or meticulousness. They write lengthy chatbot prompts and might

conduct a cursory search to verify a date or a name, but are negligent when it comes to validating

more detailed information. They are more likely to take what the chatbot says at face value.

In general, even people who say that they do not trust chatbots exhibit overtrust in some

situations, making self-proclaimed trust an unreliable signal. Even thoughtful, well-informed users

are vulnerable to false information, whether inserted intentionally or not. This problem already

exists in the wild with currently deployed, publicly available chatbots. Furthermore, unobtrusive
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warnings do not appear to alter user behavior. Since these are currently the only kinds of warnings

that exist in widely used LLMs, users are already at risk. This “easy fix” merely provides cover

for any negative downstream effects. Of course the most straightforward improvement is to ensure

that any chatbots deployed for users are entirely free of errors; unfortunately this is not technically

feasible, even with state-of-the-art technology. In domain-specific LLMs intended for expert users,

specialized training may increase the amount of validation users conduct and encourage users to

approach LLM output critically.

Because of the significant difference between prompt lengths of Critical and Credulous personas,

this metric could indicate to LLM-based chatbots which persona is using the system. This metric

is a powerful indicator because user behavior does not have to be elicited in any particular way,

special tools are not required, and this data can be directly measured by merely allowing users

to interact with the system. Based on this signal, designers could modify aspects of the chatbot

behavior or even refuse to provide an answer.

4.6 Conclusion

With participants from both personas exhibiting overtrust of the chatbots, resulting in

incorrect information being used and repeated, we identify a gap in literature concerning how to

avoid negative outcomes resulting from overtrust and overreliance. Since both visual cues (as in

Chapter 3) and explicit language-based warnings (as in this chapter) were not sufficient to encourage

compliance or correctly calibrate trust, we considered an alternate method for teaching autonomous

system teammates and users how better to interact with the system. I discuss this method in

Chapter 5.



Chapter 5

Human-in-the-Loop Iteration for Trajectory Optimization

5.1 Introduction

Figure 5.1: The user interfaces for the experimental Iterative condition (top) and the baseline
One-Shot condition (bottom). Both show a terrain map with trajectory and allow the user to draw
regions on the map. In the Iterative display, region C has just been drawn and the next instruction
of user text is ready to send. In the Baseline display, all regions and instructions are given to the
system at once. Participants in the Iterative condition can re-prioritize terms using the arrows,
whereas the One-Shot condition provides that affordance via text input.

Humans and autonomous robots, including uncrewed aerial vehicles or UAVs, are already

working together to complete tasks in extreme or adverse environments. Humans and robots each

have unique strengths and this work surfaces insights to better enable the use of those traits to

maximize the effectiveness of human-robot teams. Because of the high risk involved in close proximity

or adverse environment operations, it is important for the human collaborators to understand and

learn from the decisions that autonomous teammates are making. Furthermore, in time-critical



93

situations users must be able to learn how to communicate new information into the systems with

speed, ease, and clarity while achieving their goals. To motivate our contribution, we leverage

simulated, autonomous UAVs equipped with infrared sensors to aid firefighters in wildfire search

and discovery scenarios.

Wildland firefighters and related professionals and agencies use UAVs, in conjunction with

other tools such as crewed aircraft, satellites [217], and on-the-ground observations [218], [219], to

search high risk areas for potential wildfires, smoke, and hotspots. The scenario posed to participants

is that of a user collaboratively and iteratively planning a search route for such a UAV. Standard

trajectory optimization [220] can maximize the area being searched, however the resulting trajectory

may be difficult to understand and time-consuming to complete, leading to confusion, mistrust,

and risk, and compounding latency and observability concerns. Existing autonomous technology in

the wild uses fixed cameras to recognize signs of a fire using computer vision and machine learning

[219]. Firefighters already utilize teleoperated UAVs to aid in wildland firefighting activities [221].

However using autonomous robots in collaboration with a human team remains difficult due to

these systems’ lack of transparency and unpredictability. Robot predictability [31], [191], [222] has

been studied extensively, though not over large spatial scales. Existing hardware-software methods

for planning UAV missions like these on a 2-D interface, such as those used by GeoNadir1 , feature

the ability to create drawn annotations on a map and other techniques similar to what we use in

our interface.

This work introduces and investigates best practices for iterative communication in situations

where a human is responsible for providing plan or trajectory guidance to a robot teammate via a

2-D interface (e.g., tablet or screen) as in Figure 5.1. We surface insights about human learning

within trajectory optimization objective specification and analyze human responses to elicited robot

behavior that incorporates human-provided insights. While our particular use case in this work is

wildfire search, any sensor-driven search application can benefit from these insights, including search

and rescue, contamination detection, or mapping, among others. Our system uses natural language

1 https://geonadir.com/
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and drawn annotations to incorporate latent human knowledge into a trajectory optimization to

make the system more effective. We allow the human collaborator to iteratively add information to

the optimizer, and we display the updated trajectory after each iteration to increase transparency

and understanding.

In high-risk environments such as wildland firefighting or related searches for artifacts of

interest in dangerous regions, usability and clarity are of utmost importance. If responders are not

using the right information at the right time, human lives and other assets can be at risk. Human

collaborators in these situations require improved systems in order to learn how to avoid acting in

ways that are harmful or dangerous.

Our contribution with this work is an objective characterization of the benefits of iterative

optimization design versus one-shot design, demonstrated through a human-subjects experiment and

representative human-autonomy teaming system. We find that by prompting a user to incorporate

latent knowledge via multiple iterations rather than collectively in a single iteration, users were

better able to convey their intent, improved task outcomes, and achieved increased system familiarity

through more nuanced observations of input-output effects. In order to study these effects, we

developed a system that builds on current state-of-the-art functionality (e.g. [223], [224]) to allow

for iterative, human-in-the-loop input.

5.2 Related Works

5.2.1 Understanding, Predictability, and Learning

Difficulty in understanding [225] and predicting [191] the behavior of autonomous systems is

an enduring problem with potentially serious consequences. Efforts to improve understandability

have included embedding social cues into robot motion [222] and using augmented reality to provide

more context to a robot’s human collaborators [31]. Our approach to improving overall system

understandability is partially influenced by education theories that emphasize the importance of

experience. Constructivism [226] and experiential learning [227] present learning as an active and
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dynamic process involving the learner interacting with the world and comparing their experiences

with prior expectations. Another learning technique known as scaffolding supports the learner by

progressively emphasizing different relevant task features [228]–[230]. The iterative nature of our

experimental condition allows users to gain experience with the system and adjust their behavior

based on what they have learned from prior iterations. Further, the way in which our experiment

allows for the progressive disclosure of additional information about the scenario applies these

concepts of constructivism, experiential learning, and scaffolding.

5.2.2 Trajectory Optimization Techniques

Work to improve trajectory optimization for UAVs has led to the development of various

algorithms suited to different applications [231]. Some techniques focus on “time-optimal” solutions,

such as those required in drone racing [232] or search-and-rescue. Others are based on environmental

requirements like avoiding dynamic obstacles in tight spaces [233], or mission objectives like finding

an efficient path to collect information from members of a swarm [234]. Techniques that are

well-suited for a particular application may be disastrous for another; for example, some of the

optimizations that produce time-optimal paths are incredibly computationally expensive, taking

anywhere from 20 minutes to many hours [232]. This technique is infeasible for applications requiring

online planning. Our work provides a method for humans to transfer their knowledge into constraints

defined within a trajectory optimization problem, and to adjust these constraints as needed. As

such, our system can accommodate various optimization techniques, but requires rapid system

response for on-demand re-planning in a “while-you-wait” situation.

Existing literature explores various trajectory optimization techniques for UAVs over larger

physical scales. Some examples are in precision agriculture [235] and maritime radar surveillance

[236] however, these do not allow for iterative human input. Search trajectory solutions also exist for

supervised swarms of UAVs in variable autonomy situations, particularly in search-and-rescue [237].

The prior work includes the range of teleoperation to full autonomy. In communications-denied

or unreliable environments, the possibility of teleoperation cannot be assured, so all planning
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must happen prior to the mission. This work intentionally prompts the user to provide all latent

information in this mission planning stage.

5.2.3 Including the Human in Planning

Human-in-the-loop and shared autonomy solutions for trajectory optimization are not uncom-

mon. Ray et al. [238] use partially-observable Markov decision processes (POMDPs) to generate a

UAV trajectory with human inputs for a search-and-rescue scenario. This differs from our work in

that, based on the natural language inputs from users, we choose additional terms for our objective

function and assign weights. Existing on-the-market methods for including latent knowledge into a

UAV path planner are limited in functionality and do not allow for optimization or other related

requirements [224]. Even methods for allowing users to provide natural language or gesture-based

inputs into the planner ultimately use pre-defined trajectories rather than providing the flexibility of

an optimization [223]. Other recent work explores the incorporation of real-time obstacle avoidance

by UAVs, using information provided by a human in the loop [239]. By allowing a human to directly

intervene in the robot trajectory trained by Deep Reinforcement Learning, UAV control is improved.

Our work is complementary to this. Including human input in trajectory optimization is especially

important for assistive robotics domains [240]–[242]. Prior works prioritize user satisfaction [242]

and permit the user to customize the optimization, including with verbal, natural language inputs

[240]. For time-sensitive scenarios, it is imperative to balance autonomy with human-in-the-loop

capability to maximizing system functionality and usage. However, these prior works do not allow

for iteratively augmenting the objectives with additional human input.

5.2.4 Large Language Models as a Tool

Recent developments in large language models (LLMs) have accelerated work to translate

natural language instructions into relevant robot actions. Systems in this area were developed before

the emergence of LLMs [243], but fluent language models allow for systems that can translate a wide

range of natural language into rewards for the desired behavior [244]. Some work leverages vision
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Figure 5.2: Flow of the experiment for both conditions. Participants received instructions and a
chance to practice using the interface. Then they received new information to incorporate about
the map on their screen. While waiting for the system to re-plan, they performed a distractor task
related to reading a weather report. They did this for both the Simple and Complex maps.

models as well as LLMs to improve perception of the environment around a robot and translate it

into actions [183], [185]. Other works more tightly constrain the use of LLMs; Rana et. al. [184]

allow a language model to query a set of potential actions in the form of a structured graph in order

to generate a plan, and the plan generated by the LLM is validated before it is executed by the

robot. As LLMs continue to improve, systems like the one presented in this paper will be able to

incorporate even more functionality. Our research builds on these objectives by using an LLM as

a tool for quickly and accurately translating human language into terms usable for optimizing a

robot’s path.

5.3 Methods

Our motivating domain is wildfire search with UAVs. In this scenario, users were asked to

collaboratively plan an optimized search trajectory for a UAV actively monitoring for wildfires.

We designed the system to explore how allowing the user to iteratively add information to an

optimization can provide improved outcomes, both with respect to learning how to use the system

and the final search trajectories.

5.3.1 Experimental Design

We tested two conditions through an IRB-approved, between-subjects study (n = 41). In

each condition, participants were shown a map with an initial UAV path and given additional
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information about the area being searched; the additional information consisted of a description of

a region along with details about whether it should be searched. (See Table 5.1 for the information

provided to participants.) Their task was to input this additional information into the planning

system by indicating the relevant area(s) on the map with drawn annotations and by giving natural

language instructions about how the UAV’s path should change by typing in a text box. The

baseline condition was a one-shot attempt at adding all of the desired information to the map

at once, after which the system performed the optimization. The experimental condition was an

iterative process, where a participant was incrementally provided new information, and the system

re-optimized the UAV path after each iteration. The information provided for each map was the

same for both conditions. See Figure 5.2 for a visual representation of the flow of the experiment.

5.3.1.1 Maps

Participants conducted this task for two separate maps, which we call the Simple Map and the

Complex Map, pictured in Figure 5.3. The Complex Map had 5 areas addressed in the additional

information, and the Simple Map had 3 areas addressed. The order in which the maps were presented

was randomized in the experiment. The maps were based on real-life terrain maps of areas at risk

for wildfires.

5.3.1.2 Practice Round

In both conditions, participants were required to complete one practice round that included

drawing at least one region on the map enclosing a specific feature and entering sample text in the

text box. In the Iterative condition, participants could practice changing the priority of existing

terms. In the Baseline condition, the example text they were prompted to type included a reference

to prioritization. The experiment was run online using Prolific2 , an online recruiting platform for

research studies. We hosted the study instructions and embedded interface on a dedicated website.

We collected a variety of data during this study in order to understand how participants used

2 https://www.prolific.com/
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Figure 5.3: The two maps, Simple (left) and Complex (right), presented to participants for their
tasks. The black seven-pointed star enclosed within a rectangle indicates the UAV’s start and end
position. All participants experienced both maps in a randomized order.

the system in each condition as well as their understanding, satisfaction, and perception of usability

of the system and its output. Specifically we collected:

• The text instructions users provided to the system.

• The polygonal regions users drew on the map.

• The function terms and parameters that were added to the original objective.

• All intermediate and final trajectory waypoints.

• Time participants spent on each iteration.

• User satisfaction with the final trajectory.

• User comments about the impact of each new set of instructions on the trajectory.

• Responses to the System Usability Scale (SUS) [117].

5.3.2 Experimental System

The system, summarized in Figure 5.4, consisted of the following primary components:

• The web-based user interface that allows for user-drawn regions on the map and text inputs

(Sec. 5.3.2.1).
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Figure 5.4: Diagram of our experimental system. The user provides information to the system via
the interface. The processed user input is provided to the LLM-enabled subsystem that chooses
appropriate function terms to add, along with parameters. The new, full objective function is used
to re-plan the trajectory, and the waypoints are then plotted in the interface and shown to the user.

• The LLM-based subsystem for choosing additional terms and parameters for the objective

function (Sec. 5.3.2.2).

• The path planning subsystem that uses trajectory optimization Sec. 5.3.2.3).

5.3.2.1 User Interface

Users were presented with one of two slightly different interfaces depending on the condition

they were experiencing. These interfaces are pictured in Figure 5.1. We designed the 2-D interface

in Unity3 . Both interfaces displayed a terrain map with the trajectory, a map key and compass, a

text box for user text input, and a summary of terms in the objective function. To draw regions

on the map, users could click on the map at the desired polygon vertices, then close the polygon

by clicking near the first vertex. They could erase polygons that they had drawn in the current

iteration. Completed polygons were assigned a letter, displayed inside the region, so users could

refer to them unambiguously in their text input.

3 https://unity.com/
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In the Iterative condition, the summary of objective function terms provided features for

turning each term off or on, as well as for re-prioritizing them. In the One-Shot condition, participants

could indicate the relative priority of requirements in their input text, and the system would weight

the terms accordingly.

Information that participants were asked to communicate to the system was provided on the

webpage directly above the Unity display. This information included examples such as the need to

search a specific town or that it was not necessary to search an area above the treeline (Table 5.1).

Instructions to the participant explained that the system would incorporate the new information

they provided into its plan for the UAV trajectory. In the interface, participants were able to

communicate information to the system by drawing polygonal regions on the map and typing text

instructions in the text box.

5.3.2.2 LLM-Based Subsystem

We implemented the LLM subsystem using the OpenAI API4 with GPT-4. It took a custom

prompt that we designed and the user-provided text-polygon inputs and then elicited a minimum of

one new term for the objective function along with the necessary parameters. We developed a short

menu of functions that would be necessary. See Table 5.2 for function descriptions and more details.

These functions were designed to encourage waypoints into a region, penalize them for being in a

region, or shift points within a region towards a specific direction.

We designed our LLM prompt to interpret the user’s text-based request and then provide the

appropriate function name(s) and parameters to be added to our objective function. Prompt design

research has shown that well-designed system prompts will elicit very targeted behavior [244], and

our system demonstrated this (see Section 5.4.3). Our prompts requested that outputs be formatted

as JSON objects that contained all necessary information. We provided a template of the JSON

formatting and contents for the system to emulate. Our prompt provided specific information about

each of the possible new functions, what kinds of parameters to provide, and what input to expect

4 https://platform.openai.com/
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from the user (both text and the polygon regions). We provided high level context, explaining that

this was part of a trajectory optimization planning task, and that this would assist in planning a

path for a drone to search for signs of wildfire. Additionally, we gave the LLM context about the

scale, orientation, and features of the environment.

5.3.2.3 Path-Planning with Trajectory Optimization

The path-planning subsystem received the outputs from the LLM subsystem, then re-ran the

optimization and displayed the new trajectory to the user. We chose to use stochastic trajectory

optimization for motion planning (STOMP) [220] for our trajectory optimization algorithm. STOMP

is a method that provides new candidate waypoints by adding perturbations to the existing trajectory

and then selects candidate waypoints that reduce the trajectory’s cost according to the provided

cost function. Using STOMP allowed for a considerable amount of control over how long it took

to run the optimization, giving users timely feedback on their input. Our system was designed to

finish each optimization in under a minute. Note, however, that the nature of our system allows for

the use of any trajectory optimization method that uses objective or cost functions. Each iteration,

in either condition, adds appropriate terms to the existing objective function, thus updating the

overall objective. This technique can be applied to both STOMP and to other methods.

The backbone for our objective function was a dedicated term to maximize the trajectory’s

coverage of the desired area, computed using spanning trees. Participants were instructed that

coverage of the area was the primary objective. Participants could indicate a priority for any

information that they provided to the system. (In the Baseline condition, they could do this in

their text input. In the Iterative condition, they could alter priorities of prior inputs via the user

interface, including completely removing them from the optimization.) The system optimized over

the objective function, comprised of both the pre-defined coverage term and the terms added from

user input, using STOMP.
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5.3.3 Distractor Task

While the system was performing each new optimization, participants were asked to read

hazardous weather alerts, generated based on those provided by the National Weather Service,

and to complete a form with some specific information from each report. This task was intended

to simulate related tasks that are completed by UAV operators in the field. During pilot testing,

completing each form took between 1-3 minutes. Participants completed this task until the system

completed its optimization. Most participants completed 1-2 forms per iteration.

5.4 Results and Discussion

We conducted analyses on the objective data from the experiment, including all of the

participants’ inputs to the system (text and drawn polygons) as well as the intermediate and

final trajectories resulting from the input. We also analyzed the responses to our post-task survey

questions. For statistical tests, we use a significance level of α = 0.05. Our analyses set out to

capture how well the two versions of the system enabled participants to learn and understand how

to achieve the most desirable final trajectories. As a reminder, instructions that participants were

given are organized in Table 5.1.

5.4.1 Generating Desirable Trajectories

We analyzed final trajectories as well as the polygons that the participants drew as parameters

for the new objective function terms. For this, we calculated Positive Waypoint Compliance; we refer

to regions that participants were instructed to search as positive search regions. For a particular

trajectory, each point in the trajectory was rewarded a value of 1 for being within positive search

regions. High Positive Waypoint Compliance indicates a trajectory having waypoints within the

positive search regions. To determine the positive search regions for the Complex Map, we noted

that users were instructed to search the areas “near and including” the towns. To comply with this

information, many participants drew regions that were substantially larger than just the immediate
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town area. Expanding the area of the region for Positive Waypoint Compliance by a factor of

3 allowed the calculation to encompass points that fell both close to and within the towns, in

accordance with the phrasing of these instructions. For the Simple Map, users were instructed that,

“The town in the southwest is also a high fire risk and should be searched,” however most users

drew polygons that were larger than just the town itself. Thus, for this computation we expanded

the area around the positive search regions by a factor of 3. The green polygons in Figure 5.5

represent this information visually, with the dashed lines indicating the expanded area. The Positive

Waypoint Compliance for the Simple Map was significantly higher (t(39) = 2.31, p = .026) for the

Iterative condition (M = 2.57, SD = 2.38) than for the Baseline condition (M = 1.20, SD = 1.20).

For the final trajectories, we computedWaypoint Compliance, defined as whether the waypoints

complied with the instructions that participants were provided. For each trajectory We calculated an

average Waypoint Compliance Factor for each participant. As with Positive Waypoint Compliance,

each point was awarded a value of 1 for being within a positive search region. Similarly, points

were awarded a value of -1 for being in areas that were supposed to be avoided (e.g. burned

areas, mountaintops). The point values were summed for each final trajectory, giving the Waypoint

Compliance factor. We found that the final waypoints from the Iterative condition (M = 1.38,

SD = 3.02) were significantly more compliant (t(39) = 2.72, p = .010) than those in the Baseline

condition (M = −0.90 SD = 2.27). This result indicates that the Iterative condition

achieved better task outcomes for complying with the given instructions.

In addition to analyzing trajectory waypoints, we examined the actual polygons that partici-

pants drew, which would eventually be used by the objective terms that were added to the original

function. We computed Polygon Compliance by comparing how much the user-provided polygons

overlapped with the ground truth regions on the map corresponding to each instruction. For the

Complex Map, we created ground truth polygons that corresponded with the burned area, the

mountains, and the towns. For the Simple Map, we created ground truth polygons that corresponded

with the lake, the burned area, and the town in the southwest. We assigned high Polygon Compliance

to participants who had a majority of polygons that covered over 95% of the ground truth polygons.
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We found that for the Complex Map, the Iterative condition (M = 4.7, SD = 0.47) produced higher

Polygon Compliance (t(38) = 2.04, p = .048) than the Baseline condition (M = 3.95, SD = 1.57).

However, we found no significant difference in Polygon Compliance for the Simple Map. This implies

that for the Complex Map, with 5 different areas of interest, the Iterative condition provided a

better chance for users to appropriately incorporate the information they were provided. For the

Simple Map, with only 3 different areas of interest, there was generally high mean compliance for

both groups (M = 4.32, SD = 1.3 for Iterative, M = 4.15, SD = 1.63 for Baseline). This result

suggests that in a more complex scenario, humans have a higher likelihood of making mistakes or

misunderstanding instructions when delivered all at once, and that by allowing a user to iteratively

input preference these mistakes can be reduced. We analogize this to the concept of scaffolding

in the learning sciences; when learning more complex concepts, the learner benefits from being

presented small pieces one at a time, rather than the whole concept all at once.

5.4.2 User Input

Using the logs that were created when users proceeded between tasks and pages in the

experiment, we were able to analyze how much time they spent on the page where they received

their new information and provided their input (text and draw annotations on the map). These are

detailed in Table 5.3. Because of the nature of this study as a remote online experiment, there were

some obvious outliers in this data, suggesting that some users might have ignored the experiment

for some time rather than completing all tasks as quickly as possible. Due to these effects, we chose

to use median time to more accurately represent the data.

As expected, the Complex Map with slightly lengthier instructions took longer for participants

to provide input for than the Simple Map. Furthermore, we also see that the total time spent on

either map is somewhat greater in the Iterative condition than in the Baseline condition (30.8%

greater for the Complex Map, 15.7% greater for the Simple Map). We saw no significant effect

based on which map participants encountered first.
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5.4.3 Proving the System

Our system successfully prompted the LLM to choose the most appropriate function for the

user’s requests and to assign appropriate parameters to that function. Of the 166 total iterations (6

iterations for each participant in the Iterative condition and 2 for each participant in the Baseline

condition), the system produced usable output for 157 of them, a 95% success rate. In 6 of the

9 failure occurrences, this was due to users referencing polygons that did not exist (a total of 2

participants). In instances where the LLM failed to provide usable outputs, our system was designed

to return the prior trajectory, allowing the experiment to proceed regardless of LLM failures.

We also analyzed how long the trajectory optimization took for each iteration. For the

Complex Map, the average duration of the re-planning in the Baseline condition was 86 seconds.

For the same map, the average durations in the Iterative condition were 41”, 49”, and 71” (for each

subsequent iteration). For the Simple Map, the Baseline optimization took an average of 65”, while

the average Iterative durations were 37”, 46”, and 56”. We designed our objective function terms

with the goal of completing each optimization within approximately one minute, and these data

show how our system successfully prioritized a rapid re-planning to maximize the satisfaction of

the human in the loop. This rapid turnaround time reduces the amount of time that a user spent

waiting for the system to re-plan, while they completed the somewhat mundane distractor task.

5.4.4 Subjective Measures

While we collected participant responses to Likert questions about their understanding of the

system, the predictability of the optimization, and their satisfaction with the final trajectory, we

did not find significant differences between the two conditions on these subjective survey measures.

However, because those in the Iterative condition (M = 4.48, SD = 1.57) found the system as

equivalently satisfactory as those in the Baseline condition (M = 4.00, SD = 2.00), this suggests

that the requirement to iteratively add preferences to the system, while it did take more time, did

not negatively impact their experience. Furthermore, because of the nature of the conditions and
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execution of the experiment, participants in the Baseline condition completed fewer total distractor

tasks (a minimum of 2) than participants in the Iterative condition (a minimum of 6). Despite this,

the subjective satisfaction ratings were not significantly different between conditions.

We also obtained some insightful descriptive feedback from participants. Generally, more

participants in the Iterative condition claimed that they had an understanding of how to use

the system to produce their desired results. Some relevant and representative quotes include: “I

understood how the tasks and priority system were effecting [sic] the waypoints,” (for the Iterative

condition), and “On the last map the trajectory didn’t cover second city that should have been

searched and I couldn’t update the map,” (for the Baseline condition). This signals that users

preferred iterating on the system output, and that even those not in the Iterative condition asked

for this feature.

One participant in the Baseline condition stated that by their second map (which was the

Complex Map), they had learned how to write more clear instructions for the system. Likewise,

a participant in the Iterative condition pointed out that, “It took me a minute to adjust to how

everything worked,” but that their second map was “spot on.” These examples indicate the clear

learning benefits of being able to iteratively interact with the system.

5.5 Summary and Recommendations

To a novice user, and even one with some experience, a system like the one presented here

can be perceived as a “black box”. Users might have little to no understanding of how the system

performs its processing and optimization tasks. However, by allowing users to iteratively add

pieces of information and providing visual feedback on that information through display of the

subsequent trajectories, the user is afforded some insight into how the system works. This kind

of minimal transparency, or “translucency,” can aid in training users how best to interact with

and use such systems. We show that iteration results in a more preferable optimized trajectory.

We also demonstrate that for a more complex scenario, iteration affords users opportunities to

learn how to incorporate relevant information (here, in the form of map regions). Ultimately our
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participants indicated that they liked the ability to iterate on their inputs, and even those who were

in the one-shot condition asked for a chance to iterate. We also demonstrated that this system that

incorporates the ability to iteratively add latent human knowledge to a trajectory optimization,

aided by an LLM-enabled subsystem, and mediated via a web-based user interface, can be used for

human-autonomy teaming. In high-risk situations like wildfire search, it is imperative that users be

able to iteratively incorporate inputs, improving not only the task outcomes but also user learning

and effectiveness.
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Map Instructions

The burned area does not need to be searched as it is
low risk.

Complex The mountains are unnecessary to search because they
are above the treeline.

The areas near and including the towns should be
searched. They are high risk because they are highly
populated.

The lake is not at risk for fire and does not need to be
searched.

Simple The burned area does not need to be searched because
it is low risk for fire.

The town in the southwest is also a high fire risk and
should be searched.

Table 5.1: The instructions that were presented to participants for each map. Those in the Baseline,
one-shot condition received all of the instructions at once for each map. Those in the Iterative
condition received one instruction at a time, for a total of 3 iterations.

Function name Key parameters Short description

keep radius polygon, Penalize waypoints for
radius being inside the polygon

(or within a given radius)
explore area polygon Reward waypoints within

the given polygon
shift direction polygon, Reward waypoints in

direction, the polygon for shifting in
distance the given direction

Table 5.2: Summary of information about the additional potential functions provided to the LLM-
enabled subsystem. We implemented these functions to be easily added to our objective function
for the trajectory optimization.
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Figure 5.5: Above are the waypoints from all users’ final trajectories, separated by condition. Red
outlines indicate areas that participants were told to avoid. Green outlines indicate areas that
participants were told to search. Positive Waypoint Compliance for the Simple Map was significantly
higher for Iterative than for Baseline (p = .026). Across both maps, average Waypoint Compliance
was significantly higher for Iterative than for the Baseline condition (p = .010).

Baseline Iterative

Complex 3:04 1:15 (Iteration 1)
1:35 (Iteration 2)
1:36 (Iteration 3)

4:27 (Total)

Simple 2:47 1:19 (Iteration 1)
1:00 (Iteration 2)
0:59 (Iteration 3)

3:18 (Total)

Table 5.3: Median times for users to input their additional information into the interface (text and
drawn annotations).



Chapter 6

Conclusions

In the previous chapters I have shown how different emerging technologies can be used to

facilitate and mediate human-autonomy teaming. For example, augmented reality can provide

a transparent communication modality for humans working in close proximity of robots. And

LLM-enabled chatbots are autonomous systems that hold much promise, including for robotics

applications.

However, human teammates and users can be predisposed to overtrust these systems or to

ignore their instructions. Participants in our study in Chapter 3 failed to comply with the robot’s

instructions, despite their physical safety being in question. Furthermore, users in our chatbot

study disregarded all warnings about the chatbots’ fallibility, regardless of being told that they were

assessed on accuracy.

In order to seek out ways to improve the human-autonomy team, I designed a system that

promoted iteration over one-time interactions. We discovered that not only does iterative disclosure

of optimization criteria promote better outcomes, it also results in improved user learning.

6.1 Summary of Findings

Below is a summary of the findings from the research in this dissertation:

• Humans working near robots appear willing to sacrifice some amount of safety to achieve

increased efficiency, while also dramatically overestimating the safety of their behavior

around the robot.
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• During uncertainty, users desire insight into the decisions and priorities of an autonomous

system to help them understand the reasoning behind its actions, decrease frustration, and

help them make their own decisions about how to act.

• Increasing the perception of a collocated robot’s intelligence could significantly decrease a

worker’s cognitive load.

• In general, even people who say that they do not trust chatbots exhibit overtrust in some

situations, making self-proclaimed trust an unreliable signal.

• Even thoughtful, well-informed users are vulnerable to false information, whether inserted

intentionally or not.

• Unobtrusive warnings do not appear to alter user behavior.

• Based on prompt length, designers could modify aspects of the chatbot behavior or even

refuse to provide an answer.

• By allowing users to iteratively add pieces of information and providing visual feedback on

that information through display of the subsequent trajectories, the user is afforded some

insight into how the system works.

• “Translucency” can aid in training users how best to interact with and use such systems.

• Iteration achieves better compliance with mission outcomes.

• In complex scenarios, iteration affords users opportunities to learn how to incorporate

relevant information.

6.2 Encouraging Responsible Human-Autonomy Collaboration

In addition to publishing research that shares proven practices and recommends appropriate

design principles, we can also encourage responsible human-autonomy collaboration by advocating

for public policies aligned with research. My work in advance of the proposal of Colorado Senate Bill
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22-113 Artificial Intelligence Facial Recognition[245], signed into law by the Governor in June 2022,

provides one example of this. I also laid outlined guidance not only for involving HRI researchers in

public policy, but also for establishing policies within the HRI research community – particularly

for increasing transparency around how HRI systems use LLMs [246]. It is important that members

of this research field acknowledge their role and their responsibilities when it comes to the power

wielded by these technologies.

6.3 Future Work

Each of the works featured in this dissertation provide ample fodder for future research.

Questions remain around how we can continue to improve XR-mediated human-robot collaboration,

including how to add transparency to the system with visual cues and natural language. LLM-

enabled chatbots present a nascent yet rapidly growing collection of questions around ways to require

responsible use, both in terms of implementation changes on the back end as well as usage changes

on the front end. And human-autonomy teams in the field will continue to require innovations that

follow from the findings we presented here around how to onboard users effectively and improve

mission outcomes. I can only expect that this field will continue to grow in novel and fascinating

ways, and I hope that this work can inform future technological innovations.
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“Evaluating exemplary training accelerators for Programming-by-Demonstration,” in 19th

International Symposium in Robot and Human Interactive Communication, ISSN:

1944-9437, Sep. 2010, pp. 440–445. doi: 10.1109/ROMAN.2010.5598611.

[69] M. Gianni, G. Gonnelli, A. Sinha, M. Menna, and F. Pirri, “An Augmented Reality approach

for trajectory planning and control of tracked vehicles in rescue environments,” in 2013

https://doi.org/10.1145/3434073.3444676
https://doi.org/10.1145/3434073.3444676
https://doi.org/10.1145/3434073.3444676
https://doi.org/10.1109/ICRA48506.2021.9561144
https://doi.org/10.1109/ICRA48506.2021.9561144
https://doi.org/10.1016/j.cirp.2008.03.120
http://www.sciencedirect.com/science/article/pii/S0007850608000917
https://doi.org/10.1109/ROMAN.2010.5598611


126

IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),

ISSN: 2374-3247, Oct. 2013, pp. 1–6. doi: 10.1109/SSRR.2013.6719360.
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