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Existing approaches to autonomy can handle highly structured environments such as confined

spaces within factories or lanes on freeways. However, they are still uncommon in unstructured

settings with uncertain dynamic agents in the environment. In this work, we present a hybrid

online Partially Observable Markov Decision Process (POMDP) planning system that addresses

the problem of autonomous navigation in the presence of multi-modal uncertainty introduced by

other agents in the environment. As a particular example, we consider the problem of autonomous

navigation in dense crowds of pedestrians and among obstacles. One previous approach to this

problem first generates a path using a complete planner (e.g., Hybrid A*) with ad-hoc assumptions

about uncertainty, then use online tree-based POMDP solvers to reason about uncertainty with

control over a limited aspect of the problem (i.e. speed along the path). We present a more

capable and responsive real-time approach enabling the POMDP planner to control more degrees

of freedom (e.g., both speed AND heading) to achieve more flexible and efficient solutions. This

modification greatly extends the region of the state space that the POMDP planner must reason

over, significantly increasing the importance of finding effective roll-out policies within the limited

computational budget that real-time control affords. Our key insight is to use multi-query motion

planning techniques (e.g., Probabilistic Roadmaps or Fast Marching Method) as priors for rapidly

generating efficient roll-out policies for every state that the POMDP planning tree might reach

during its limited horizon search. Our proposed approach generates trajectories that are safe

and significantly more efficient than the previous approach, even in densely crowded dynamic

environments with long planning horizons.
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Chapter 1

INTRODUCTION

It is increasingly common to find autonomous systems operating successfully in relatively

predictable and structured scenarios. For instance, vehicles can drive autonomously to stay within

their lane on freeways (Fig. 1.1). Robotic manipulators can also be seen operating autonomously

in structured confined spaces inside factories (Fig. 1.2). However, it is still uncommon to see

autonomous systems in unstructured environments with uncertain dynamic obstacles. Despite

ample investments, more complex navigation tasks with less structure imposed on the dynamic

elements remain open challenges [26, 34]. Interaction with other agents in the environment is a

particularly prolific source of difficult problems. Navigating through a crowd of pedestrians is one

important example of this. In science fiction movies like Star Wars, droids move deftly between

the people walking around them, and intuitively pedestrians should not greatly impede a properly-

controlled robot’s motion. In order to choose a good trajectory, however, the robot must reason

about the intentions of the humans around it, a task fraught with uncertainty.

The Partially Observable Markov Decision Process (POMDP) is a mathematical framework

for optimal decision making in the presence of various types of uncertainty. Previous approaches to

tasks like pedestrian navigation have used the POMDP framework for navigation-centric tasks (e.g.

[7, 4, 10, 47, 27, 33]). However, in these approaches POMDP planning is often relegated to a very

limited role (e.g. speed control), or to a very limited class of uncertainty (e.g. Gaussian or unimodal

distributions [4, 10]). For instance, Bai et al. (2015) [7] use the hybrid A∗ algorithm [17] to plan a

drivable path from the vehicle’s current position to its goal location, using a POMDP formulation
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Figure 1.1: An autonomous vehicle using sensor observations to drive and stay in its lane. Image
borrowed from [2]

Figure 1.2: Robotic manipulators assembling a car in a structured factory setting. Image borrowed
from [3].
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only for speed control over that path. The observed reticence within the field to use POMDPs for

large planning problems is understandable; in general obtaining exact solutions to POMDPs is an

intractable problem [37]. However, sparse tree-based online planners are surprisingly insensitive to

the size of the state and observation space [25, 43, 52, 46], suggesting a way forward for increasingly

expressive POMDP formulations to improve the state of the art in critical control problems.

In contrast to the partitioned approach, we propose a more effective and general approach to

planning for real-time tasks involving navigation with partial observability and arbitrary distribu-

tions. We assert that the POMDP planner should have control over all degrees of freedom that are

relevant to the uncertainty it is facing to maximize its ability to generate satisfactory plans. For

example, when navigating among pedestrians, the POMDP planner should have control over the

speed and heading, rather than solely speed along a predetermined path [9, 22, 21, 7]. One may

use online POMDP algorithms (e.g., DESPOT [52]) that perform a tree search guided by value

estimates obtained by executing a roll-out policy.

Since an expansion of the action space can open up a much larger region of the state space

to exploration, a critical challenge is determining a good roll-out policy for the vastly increased

set of states reachable in the tree search. Since previous comparable approaches plan only along

a 1-D path generated via A∗, roll-out policies are needed only for that single path, which are

straightforward to specify by hand [7]. In the absence of an effective roll-out policy, a limited-horizon

planner might never find the sparse positive terminal rewards that are typical in navigation tasks.

The proposed method addresses this by incorporating multi-query motion planning techniques

to produce a more informed roll-out policy, allowing for a corresponding increase in POMDP

complexity and thus solution quality. To demonstrate the effectiveness of this approach we evaluate

it with two motion planning methods, Probabilistic Roadmaps (PRM) and Fast Marching Methods

(FMM), to generate effective roll-out policies.

Our evaluation shows that online navigation solutions to a POMDP with an extended action

space and roll-out policies informed by multi-query planning methods are considerably more efficient

in densely crowded environments than the two-step approach proposed in [7] without compromising
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Figure 1.3: Two-dimensional POMDP motion planning with pedestrians. Green and red objects
represent nodes in the planning tree, with green indicating high value. Blue circles denote the
position of humans at different times. Black circles denote static obstacles. Dashed lines represent
roll-out trajectories, a critical part of the proposed approach.
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the safety of the pedestrians. The proposed approach explores multiple possible paths over a wider

search space while reasoning over uncertainty in pedestrian intention as can be seen from Fig. 1.3,

instead of handling uncertainty over just one path [7, 9, 22, 21]. We have also shown that the choice

of multi-query planning technique does not affect the performance significantly, as long as it can

generate an effective roll-out policy. Using pedestrian navigation as a motivating example for our

proposed method throughout the remainder of this work, we refer to the popular unidimensional

speed-based POMDP control formulation as Limited Space planner or LS planner, and our higher-

dimensional (speed and heading) action space POMDP formulation as Extended Space planner or

ES planner.

1.1 Thesis Outline

This chapter in intended to give a overview of the problem and the proposed approach to

solve it. The thesis is structured in the following way, starting from the next chapter:

• Chapter 2: RELATED WORK - This chapter briefly explains the prior work on solving

the problem of autonomous navigation among crowd.

• Chapter 3: TECHNICAL APPROACH - This chapter formalizes the problem of au-

tonomous navigation among crowd as a POMDP and describes other essential technical

components required for solving the problem.

• Chapter 4: EXPERIMENTS - This chapter describes in detail the simulation environment,

different experimental scenarios and the different approaches that were implemented and

compared.

• Chapter 5 : RESULTS and DISCUSSION - This chapter summarizes the results from our

experiments and provides an explanation for the the obtained results.

• Chapter 6 : CONCLUSION and FUTURE WORK - This chapter concludes and mentions

a few future directions of research.
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Chapter 2

RELATED WORK

In recent years, a number of research efforts have focused on solving the problem of au-

tonomous navigation in dynamic environments, especially among pedestrians.

2.1 Pedestrian Modeling

For safe and efficient navigation, a controller should incorporate pedestrian intentions and

the corresponding behaviors into decision making. This raises the need for accurate models of

pedestrian intention and behavior. A considerable amount of work has focused on using recorded

trajectories to learn pedestrian dynamics [15, 5, 35]. However, these methods generally have large

data requirements, and the learned model may not generalize well to new conditions. Since these

learned patterns generally do not change after their generation, Vasquez et al. [51] presented an

approach where motion patterns can be learned incrementally, and in parallel with prediction using

Hidden Markov Models. Luo et al.[33] designed a pedestrian motion model that accounts for both

intentions and interactions to capture pedestrian motions accurately.
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Figure 2.1: Two step POMDP-based planning for autonomous driving.

2.2 Vehicle Controller

Our work can be situated within a body of literature that focuses on determining the best

plan of action for an autonomous vehicle, given a pedestrian behavior model. Less complex ap-

proaches use reactive control schemes ([40, 20]) that neither utilize a pedestrian model nor account

for the delayed effects of the agent’s current action. As a result, these approaches often lead to sub-

optimal decisions. Another common approach is to use deterministic pedestrian behavior models

to generate paths that avoid dynamic and static obstacles. The path can subsequently be executed

using a feedback controller ([50, 28]). However, both approaches ignore the uncertainty in pedes-

trian intention estimation. Recent work has addressed this issue by formulating the problem as

a POMDP, and then solving it by either using techniques from deep reinforcement learning (RL)

[13, 41] or online POMDP solvers [52, 11, 29, 45].

The works most closely related to this work use online POMDP planning for the task of

navigating under uncertainty[7, 47, 33, 44, 9, 22, 21]. Bai et. al [7] tackled the complex task of

navigation among pedestrians using a two step process. The block diagram for their approach is

presented in Fig. 2.1. They used hybrid A∗ to obtain a sequence of steering angles that can guide
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the vehicle to its goal, and then used a POMDP planner which reasoned over the uncertainty in

nearby pedestrians’ intention to control the speed over that path. This two step process can lead

to undesirable stalling of the vehicle. Luo et. al [33] compared the two-step planner’s performance

against a dynamic hybrid A∗ approach that planned over both heading angle and speed, and

the dynamic hybrid A∗ approach outperformed other planners in all of their evaluation metrics.

However, it led to collisions with pedestrians because unlike POMDP planning, dynamic hybrid

A∗ path planning does not have the capability to handle pedestrian intention uncertainty. MAGIC

[29] showed the effectiveness of using macro actions, a combination of both steering and speed

in POMDP planning for autonomous driving in crowded environments. This suggests that the

POMDP planner should control both degrees of freedom for safe and efficient planning. However,

MAGIC introduces an additional step of learning macro actions which, we argue, is not necessary

if suitable roll-out policies are used.

Liang et al. [30], Sathyamoorthy et al. [39] and Fan et al. [32] used PPO [41] to train an

RL policy that directly maps sensor data to vehicle velocity for collision avoidance with dynamic

obstacles. However, these RL agents are hard to train for long range navigation tasks in complex

environments where reward is sparse [19]. SA-CADRL [12] uses a global planner [14] to generate

way-points/sub-goals in close proximity, and used an RL planner to obtain socially acceptable

collision free path between those way-points. To solve long range navigation tasks with just static

obstacles, PRM-RL [19] uses motion planning techniques, primarily sampling based methods for

generating a roadmap using the RL agent to determine connectivity, rather than the traditional

collision free straight line interpolation in C-space. RL-RRT [16] applies similar idea but also

imposed kinodynamic constraints on the local RL planner. They showed the effectiveness of offline

methods in guiding the optimal decision search.

Our work shows that online POMDP planning over increased degrees of freedom is achievable

and more effective than controlling only a subset, without the need to learn and incorporate macro

actions [29]. The advantages of expanded space POMDP planning comes at the cost of higher

computational complexity which can be offset by the use of offline methods. In practice, the
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”offline” portion of the computation can be carried out online, but at a slower rate than the

POMDP planning. The purpose of this work is to demonstrate that POMDP planning is an

effective tool that is capable of rapidly solving large-horizon planning problems, provided it can

be guided by effective roll-out policies. To the best of our knowledge, this is the first work that

combines POMDP planning over multiple degrees of freedom with multi-query motion planning

approaches for real time navigation in continuous dynamic environments with multi-modal process

uncertainty.
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Chapter 3

TECHNICAL APPROACH

This section describes the different technical components of our approach including our

POMDP model, the DESPOT algorithm, and the multi-query planning techniques that under-

pin its performance.

3.1 POMDP Preliminaries

The Markov Decision Process (MDP) is a mathematical framework for representing a broad

class of sequential decision making problems. A POMDP is a generalization of an MDP in which

the agent cannot directly observe the underlying state. Instead, it must maintain a probability dis-

tribution over the set of possible states, based on a set of observations and observation probabilities,

and the underlying MDP.

A POMDP is defined by a tuple (S,A,Z, T,O,R, γ), where S is the state space, A is the

action space, Z is the observation space, T is the transition model, O is the observation model, R

is the reward model, and γ is the discount factor. When the system is in state s ∈ S and takes an

action a ∈ A, it reaches state s′ ∈ S with probability T (s, a, s′) and gets an observation z ∈ Z with

probability O(s′, a, z). The reward model R is specified by a function R(s, a, s′) which specifies the

immediate reward of transitioning from state s via action a to state s′.

A policy for a POMDP is a function π that specifies the action a = π(b) at any given belief

over the state space b. Online POMDP solvers generate a policy that maximizes the expected total

reward from the current belief b:
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Figure 3.1: Extended Space POMDP based planning for autonomous driving.

Vπ(b) = E(
∞∑
t=0

γtR(st, π(bt))|b0 = b) (3.1)

3.2 Problem formulation as a POMDP

Our approach utilizes a POMDP to model both the agent and the dynamic obstacles around

it, generating control solutions that account for uncertainty in the environment. Fig. 3.1 represents

the block diagram of the proposed approach.

3.2.1 State Modeling

The state vector in our dynamic environment navigation task POMDP consists of the vehi-

cle state and a vector of dynamic obstacle states. The vehicle state consists of position (xc, yc),

orientation θc, current speed vc and its goal location gc. The state vector contains nped pedestrian

states whose future motion intentions are not directly observable, contributing uncertainty in the

problem formulation. The state of the ith pedestrian consists of its position (xi, yi), speed vi, and

its intended goal location gi. The intention of a pedestrian is modeled as a goal location, which is

hidden from the vehicle and must be inferred from its observed behavior.
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3.2.2 Action Modeling

The action space in the navigation POMDP consists of a two dimensional vector where the

agent chooses both steering (the change in the orientation angle, δθ) and velocity (the change in

vehicle’s speed, δs) controls, with the range of possible values for each being dependent on the

vehicle state. Further details on this are available in Section 4.3. There is also a SUDDEN BRAKE

(SB) action that immediately stops the vehicle to avoid collision with pedestrians in unexpected

scenarios.

3.2.3 Observation Modeling

An observation in our POMDP model is a vector consisting of the vehicle position and the

discretized position of all the nped pedestrians. Given state-of-the-art sensing technology and the

effectiveness of filtering techniques, our model assumes no observation noise for these variables

(empirically, small noise here does not materially affect agent policy). As a pedestrian’s intention

is the partially observable variable in our model, we have to infer it from the observations received

over time, hedging against estimation uncertainty during decision making.

3.2.4 Reward Modeling

The POMDP’s reward model guides the vehicle towards an optimal driving behavior which

is safe, collision-free, and reaches the goal efficiently. We considered the following rewards in our

model.

• Goal Reward: If the vehicle reaches within distance Dg to the goal, then there is a large

positive reward Rgoal. This reward is modeled to encourage the vehicle to reach its goal.

• Obstacle Collision Penalty: If the vehicle passes within a distanceDobs to the static obstacle,

then there is a substantial negative reward of Robs. This reward is modeled to prevent the

vehicle from running into static obstacles.
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• Pedestrian Collision Penalty: If the vehicle is moving and passes within a distance Dped to

a pedestrian, then there is a substantial negative reward of Rped. If the vehicle is stationary,

then we assume the pedestrian is responsible to avoid it. This reward is modeled to ensure

safety of the pedestrians as well as the vehicle.

• Low Speed Penalty: If the vehicle is driving slower than it’s maximum possible speed vmax,

then there is a small negative reward Rspeed = (vc − vmax)/vmax. This reward is modeled

to encourage the vehicle to drive fast whenever possible.

• Sudden Stop Penalty: If the vehicle chooses the SB action, then there is a negative reward

of RSB. This reward is modeled to incentivize the policy against frequent “sudden brake”

action, and exploring paths where that action can be avoided.

• There is also a small negative reward of Rt for every planning step. This reward is included

to discourage longer paths.

3.2.5 Generative Model G

For many problems, it is difficult to explicitly represent the probability distributions T and

Z. Some online POMDP solvers, however, only require samples from the state transitions and

observations. As a consequence, it is beneficial to use a generative model which implicitly defines

T and Z, even when they cannot be explicitly represented. G stochastically generates a new state,

observation, and reward given the current state and action: s′, o, r = G(s, a). In our generative

model, for a given POMDP state s and action a, we simulate the vehicle forward by applying a for

time step ∆t and move all pedestrians towards their sampled goal location. The ith pedestrian is

moved towards gi by a distance of vi∆t+ωi, where ωi is a small random noise. While more complex

pedestrian models exist (e.g. PORCA [33]), the choice of dynamic object model is regarded as an

interchangeable component of the presented architecture and is not framed as a contribution of this

work.
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3.3 Solving POMDPs Online with DESPOT

For a given belief b0, we do online POMDP planning to determine the best vehicle action

at that belief. Online POMDP planning is performed by doing a tree search over the belief space

starting from the belief node b0. In the generated belief tree, each node represents a belief, and each

edge represents an action-observation pair. The belief tree is searched using post-order traversal.

At every leaf node, a default policy is simulated to obtain a lower bound on its value. At each

internal node, the best action is chosen using Bellman’s principle of optimality:

V (b) = max
a∈A

{
∑
s∈S

b(s)R(s, a) + γ
∑
z∈Z

p(z/b, a)V (τ(b, a, z))} (3.2)

which recursively computes the maximum value of action branches and the average value of

observation branches. This results is an approximately optimal policy π for the current belief b0.

The vehicle can then execute the first action of the policy, π(b0). A complete belief tree grows on

the order of O(|A|D|Z|D) where D is the maximum depth of the belief tree. When the action or

observation space is large, it becomes impractical to construct or search the full belief tree within

the limited computational budget.

DESPOT [52], a state of the art anytime algorithm, whose key strengths include handling

large observation spaces addresses this issue. Since the second sum in equation 3.2 computes an

average value over observation branches, there is no need to examine all observation branches to es-

timate the average and identify an approximately optimal action. A sampled subset of observations

branches may be sufficient to estimate this average. The key idea of DESPOT is to summarize

the execution of all policies under K sampled scenarios. Under each scenario, a policy traces out a

path in the belief tree (Fig. 3.2). This path corresponds to a particular sequence of action chosen

by the policy and observation received. The belief tree generated using the DESPOT algorithm is

a sparsely sampled belief tree which contains only the belief-tree nodes and edges traversed by all

possible policies under the sampled scenarios. While the original belief tree contains O(|A|D|Z|D)

nodes, the DESPOT tree contains only O(|A|DK) nodes, leading to dramatic improvement in com-
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Figure 3.2: A belief tree of height H= 2(gray) and a corresponding DESPOT tree (black) obtained
with 2 sampled scenarios, shown in blue and orange.The blue and orange curves indicate the
execution paths of a same policy under the two scenarios. Image borrowed from [7].

putational efficiency for moderate K values. DESPOT builds its tree incrementally by performing

a heuristic search guided by a lower bound and an upper bound on the value at each belief node

in the tree.

We calculate the lower bound at a belief leaf node bl by simulating a roll-out policy for all the

scenarios at that belief. For LS, the roll-out policy executes the hybrid A∗ path. For our proposed

formulation (ES), the roll-out policy executes a path from the vehicle’s current location to its goal

aided by the use of a multi-query planner (e.g., PRM or FMM). We use a reactive controller to

determine vehicle speed along the path. If there are no pedestrians within distance Dfar from the

vehicle, then it increases its speed by 1 m/s. If there are pedestrians within distance Dnear to the

vehicle, then it decreases its speed by 1 m/s. Otherwise it maintains its current speed. The roll-out

policy is run for a fixed, predefined number of steps M or until the termination criteria has been

met.

We calculate the upper bound at bl by averaging the upper bound for all the scenarios at

bl. For a scenario, if the vehicle is not stationary and is within distance Dped from any pedestrian,

then the bound is Rped. Otherwise, it is γtRgoal where t is the time taken by the vehicle to reach
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the goal along the chosen path assuming that the vehicle drives at its maximum speed with no

dynamic obstacles (e.g., pedestrians) around.

DESPOT generates a policy tree from this information, with the controller selecting the

action at the root of the tree with the greatest expected reward.

DocuSign Envelope ID: C1903AD7-001F-4CAD-9493-60F7934790BC



17

3.4 Fast Marching Method for Multi-Query Path Planning

The Fast Marching Method (FMM) is an algorithm for tracking and modeling the motion

of a physical wave interface [36]. The interface is a flat curve in 2-D and a surface in 3-D or higher

dimensions. It efficiently solves the Eikonal equation:

1 = F (x)|∇T (x)| (3.3)

where x is the position, F (x)(≥ 0) is the expansion speed of the wave at that position, and T (x) is

the time taken by the wave interface to reach x from its source.

Given the wave’s source point and the expansion speed, F defined over all points in the

environment, FMM calculates the time T that the wave takes to reach those points. Since F > 0,

the wave can only expand and it can be shown that the T(x) function (originated by a wave that

grows from one single point) has only one global minima at the source and no local minima. This

method is effective in obtaining a path from any given point in the environment to the wave’s

source point using gradient descent [49].

Assume the environment displayed in Fig. 3.3 where black shapes represent static obstacles

in the environment and the symbol G in green denotes the goal location of the vehicle. In order to

obtain a path from any given point in the environment to the goal location, we need to solve the

Eikonal equation. To solve equation 3.3 via FMM, we discretize the environment into grid cells,

assigning F = 0 for those grid cells where static obstacles are present and F = 1 everywhere else in

the environment. We let the wave originate from the vehicle’s goal location and then solve equation

3.3 using the discrete solution that Sethian proposed in [42] to get a grid map of T values for all the

cells. The heat map of the time values is displayed in Fig. 3.4 with the blue color denoting low value

and the red color denoting high value. We then apply the Sobel operator in a 3× 3 neighborhood

of every grid cell on the grid map of time values to obtain the direction of the gradient at that cell.

Let the symbol S in green denote the position of the vehicle in the environment (Fig.3.5). We use

the position coordinates of the vehicle to determine the cell of the environment in which the vehicle

is present. In order to find a path from that cell to the vehicle’s goal location for the roll-out policy,
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Figure 3.3: Environment with static obstacles (white region denotes free space and black region
denotes occupied space. G denotes the goal location of the vehicle. Image borrowed from [1]

we keep moving some predetermined and fixed α units in the opposite direction of the gradient at

that cell until the goal is reached. The obtained path from S to G can be seen in Fig.3.6.
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Figure 3.4: Heat map of the time values obtained by solving the Eikonal equation using FMM
where G is the starting point of the wave. Image borrowed from [1]

Figure 3.5: S denotes the position of the vehicle in the environment. Image borrowed from [1]
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Figure 3.6: Path obtained from S to G by moving α units in the opposite direction of the gradient
until the goal location G is reached. Image borrowed from [1]
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3.5 Probabilistic Roadmaps for Multi-Query Path Planning

The Probabilistic Roadmap (PRM) is a well known method for path planning in high dimen-

sions for robots in static environments. The method constructs a graph whose nodes correspond

to collision-free configurations in the space and whose edges correspond to feasible paths between

these configurations [24]. This method can be used for any type of holonomic robot. For a holo-

nomic vehicle moving on the 2-D plane, the graph nodes correspond to (x, y) coordinates in the

environment and the edges correspond to collision free linear paths between those points.

Assume the environment displayed in Fig. 3.7 where black shapes represent static obstacles

in the environment and the vehicle’s goal location is near the top right corner. In this work, we

assigned vehicle’s goal location as a node in the PRM , and randomly sampled Nprm − 1 more

collision-free configurations or nodes in the environment (Fig. 3.8). An edge can be added between

two nodes in the generated PRM if there is a straight line collision-free path between those two

nodes. We added edges by connecting each node to its k nearest neighbors to which a collision-free

straight line path is possible (Fig. 3.9). The euclidean distance between the two nodes represent the

weight of the edge between them. We can then use any graph search algorithm to find the shortest

path from any node to the the node in the PRM which corresponds to the vehicle’s goal location.

This was repeated for all the nodes in the PRM to find the shortest path and the cost of that

path. Using this PRM and the pre-computed shortest paths, we can find a path from any point in

the environment to the vehicle’s goal location for the roll-out policy. For any given position of the

vehicle in the environment, we consider only the PRM nodes within a predetermined fixed distance,

dPRM from the vehicle to find the path (Fig. 3.10). For all the nodes within distance dPRM from

the vehicle to which straight line traversal is possible, we compute the euclidean distance to reach

those nodes. Since we have already computed the path from every PRM node to the goal location,

we use that along with the calculated euclidean distance to calculate the total cost to reach the

goal location from the vehicle’s location via that PRM node (Fig. 3.11). The path with the least

total cost is chosen for the roll-out policy (Fig. 3.12).
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Figure 3.7: Environment with static obstacles

Figure 3.8: Sampling collision-free configurations (blue dots) in the environment to generate a
PRM
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Figure 3.9: Connecting every node to its k nearest neighbors in the PRM

Figure 3.10: Vehicle and the PRM nodes within distance dPRM from the vehicle in the PRM
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Figure 3.11: Calculating total cost from the vehicle to its goal location for all the possible paths

Figure 3.12: Lowest cost path from vehicle to its goal location using the sampled PRM
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3.6 Tracking POMDP Belief

The partially observable variables in the POMDP formulation are pedestrian intentions (goal

locations) that are inferred by the belief tracker based on the series of observations received. Since

in practice there tends to be a finite number of pedestrian goal locations for a given environment,

the belief over all such intentions for each pedestrian forms a discrete probability distribution.

Changes in goal can also be captured by the POMDP’s belief tracker. For each pedestrian being

attended to, the belief tracker observes their movement from (x, y) to (x′, y′), calculates their

velocity v, and updates the belief b(g) over all the possible intentions to b′(g) using the following

update formula: b′(g) = ηp(x′, y′|x, y, v, g,M)b(g), where η is a normalization constant. Based on

the chosen pedestrian model M , p(x′, y′|x, y, v, g) will be directly proportional to the progress the

pedestrian made towards goal g.
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Chapter 4

EXPERIMENTS

In this section we explain our simulation environment and different experimental scenarios.

We also provide specific details about different planners and parameter values used for the experi-

ments. The open source code for the experiments is hosted at

https://github.com/himanshugupta1009/extended space navigation pomdp.

4.1 Simulation Environment

The environment in our simulator is a 100 m × 100 m square field. It is assumed that the

four corners of the square are the possible goal locations for the pedestrians. The autonomous

vehicle is modeled as a holonomic vehicle whose starting position is in the bottom left half and goal

location is in the top right half of the field as can be seen in Fig. 4.1. Using the Kinova MOVO

robot as a representative example of this class of platform, we set the vehicle’s maximum speed

to 2 m/s. Pedestrians are assigned one of the four possible goal locations at random. As soon as

a pedestrian reaches its goal location, it is removed from the environment and a new pedestrian

is spawned randomly along one of the edges of the field. Its goal location is chosen from the two

goals on the opposite edge at random. This is done to ensure that there are a fixed number of

moving pedestrians in the environment at any moment of time. The pedestrian simulation model

is same as the model used by the POMDP generative function in Section 3.2.5. However, since

it is merely a component of our simulator, it can be replaced by an alternative pedestrian model

(e.g. PORCA [33]) without much effect on the performance of the proposed approach so long as
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Figure 4.1: Simulation Environment

it is congruent with pedestrian behavior in the environment. This simulator was built using the

high-level, high-performance programming language Julia [8].
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4.2 Experimental Scenarios

We have designed three different scenarios to compare our planner’s performance against a

widely adopted baseline method (LS planner) [7]. They are as follows:

4.2.1 Scenario 1

There are no static obstacles in the environment. It resembles an open field. We designed

this to analyze the proposed planner’s performance when there is plenty of empty space for the

vehicle to explore to avoid collision with pedestrians.

4.2.2 Scenario 2

There are six small static circular obstacles that are scattered throughout the environment.

It resembles a cafeteria setting. We designed this to analyze the proposed planner’s performance

when there is less empty space available but it is distributed throughout the field.

4.2.3 Scenario 3

There is a large static circular obstacle in the bottom right corner of the environment. It

resembles a L shaped lobby. We designed this to analyze the proposed planner’s performance when

the empty space is available only in certain parts of the environment which forces the vehicle to

navigate among pedestrians in a limited space.
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Figure 4.2: Scenario 1: Open field

Figure 4.3: Scenario 2: Cafeteria setting
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Figure 4.4: Scenario 3: L shaped lobby
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4.3 Planners

The alternative experimental planners tested in the experiments are described below. All

planners use the POMDPs.jl [18] implementation of DESPOT from the ARDESPOT.jl package.1

4.3.1 LS planner

This is the baseline approach, 1D-A∗ against which we have compared our proposed planner’s

performance. At every time step, the hybrid A∗ algorithm finds a path from vehicle’s current

position to its goal. The path generated by Hybrid A∗ on this landscape is then used in conjunction

with a POMDP solver that determines the optimal speed given the fixed path and pedestrians

located around the vehicle.

The Hybrid A∗ algorithm is an extension to A∗ that can generate a drivable path for the

vehicle over continuous state space, and notably was used for autonomous mobile robot path plan-

ning during the DARPA Urban Challenge [48]. The path from vehicle’s current position to its goal

location is denoted by ρ, and is defined as a sequence of points (x0, y0), (x1, y1), ..., (xn, yn) equally

spaced along ρ. The path cost is defined as

C(ρ) =
n∑

i=0

(λiCst(xi, yi) + λiCped(xi, yi))

Hybrid A∗ finds a minimum cost path from the vehicle’s current position to its goal location.

The path cost is the sum of two components, 1) Cst to penalize collisions with static obstacles

and 2) Cped to penalize collisions with pedestrians. We reduce the path cost exponentially over

time by a fixed discount factor λ ∈ (0, 1] to more heavily consider cost estimates at the beginning

of the path due to increasing uncertainty [7]. In this approach, every pedestrian is modeled as a

static obstacle at the center of a potential field with size proportional to the uncertainty around

their intended goal. When pedestrian’s intention is highly uncertain, we place a large potential

field around the pedestrian’s current location. Otherwise, we place a potential field around the

1 https://github.com/JuliaPOMDP/ARDESPOT.jl
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pedestrian’s most likely path [7]. The path planner has 36 search actions from −170◦ to 180◦ at

10◦ intervals.

The corresponding POMDP’s reward model is the same as that described in Section 3.2.4

with the exception of the obstacle collision penalty, which is omitted since collision with static

obstacles is avoided by the path planner. LS uses DESPOT to determine the best possible δs out

of {−1m/s, 0m/s, 1m/s, SB} at every time step along the generated path.

4.3.2 ES planner

We propose two ES planners, 2D-FMM and 2D-PRM . At every time step, ES selects

both, δθ and δs for the vehicle. Since DESPOT does not perform well for continuous or large action

space problems, we choose a small discrete set of actions depending on the vehicle’s state variables

(xc, yc, vc). When vc = 0, there are 9 possible actions. It can either stay stationary (i.e δs = 0

m/s) or increase its speed (i.e δs = 1 m/s) while choosing a δθ. There are 7 possible choices for δθ

from −45◦ to 45◦ at 15◦ intervals. We add another potential value for δθ related to potential roll-

out policies called δRO, which changes the vehicle’s orientation according to the FMM or PRM

roll-out policy at (xc, yc). If vc ̸= 0, then there are 11 possible actions. The planner can choose to

either increase (δs = 1 m/s) or decrease (δs = -1 m/s) its speed without changing its orientation

(i.e. δθ = 0◦), or maintain its current speed (i.e δs = 0 m/s) and select from 8 possible δθ choices

mentioned above, or apply the SB action.

Depending on the planner, DESPOT uses either FMM (Section 3.4) or PRM (Section 3.5)

to obtain a path for the scenarios at a belief node. To evaluate the lower bound at that belief node,

the roll-out policy executes a reactive controller to determine speed over that path.
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4.4 Experimental Details

For each scenario, we ran sets of 100 different experiments with different pedestrian density

in the environment. The number of pedestrians in the environment varied from 100 to 400 (in

increments of 100). In each experiment, pedestrians were assigned random starting points and

intentions. The performance of different planners was compared for that sampled environment

under the same random seed for noise in simulated pedestrian motion. In simulations, the planning

time for each step is 0.5 seconds. For 1D-A∗, we devote 0.15 seconds for path planning, and 0.35

seconds for speed planning by solving the corresponding POMDP. For 2D-FMM and 2D-PRM ,

all of the planning time is devoted to solving the POMDP because the multi-query motion planning

needs to be computed only once for the environment. The online POMDP solver reasons over the

uncertainty in intentions of 6 nearest pedestrians (i.e. nped = 6). DESPOT performs online tree

search with 100 sampled scenarios. We define a trajectory to be unsafe if at any time step the

moving vehicle gets within 1 m distance of a pedestrian.
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RESULTS and DISCUSSION

Table 5.1: Holonomic Vehicle Planner Performance Comparison.

The average travel time, the number of trajectories in which each proposed planner outperformed the baseline
in terms of travel time, and the average number of SB actions for each algorithm over 100 trials. The standard
error of the mean is indicated for averaged quantities. The best travel time and the least amount of SB
action in each row are bolded. Multiple entries are bolded if they are statistically similar.

The results from our experiments are summarized in Tables 5.1 and 5.2. We computed the

average travel time, the number of trajectories in which the proposed planner outperformed the

baseline in terms of travel time, and the average number of times SB action was executed across

100 experiments for all the planners in different settings. Since all the planners have the SB action

in their action space, they executed safe trajectories in every experiment. All of the experiments

fulfilled the success criteria.

Experimental results for a holonomic vehicle are compiled in Table 5.1. The first key obser-

vation is that our proposed extended space planners, 2D-FMM and 2D-PRM executed paths that
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took less travel time than the baseline without compromising safety. For each experimental setting,

the best travel time is marked in bold in Table 5.1. The travel time for 2D-FMM and 2D-PRM

is comparable across all the different settings which indicates that the sensitivity of travel time to

the choice of motion planning algorithm used for generating effective roll-out policies is low. The

differences in travel time for ES planners as compared to the LS planner across different settings

are characterized in Fig. 5.16.

The baseline approach took more travel time on average primarily due to the segregation of

planning problem in two components. The hybrid A∗ algorithm generates a path without consider-

ing the vehicle’s speed and by using ad-hoc techniques to handle uncertainty in pedestrian intention

as described in Section 4.3.1. In most of the cases, the POMDP speed planner (LS) realizes that

traveling along this fixed path at the vehicle’s current speed can lead to a collision. As a result,

it decides to either slow down or stop which increases the travel time. The decoupling of heading

angle and speed forces the baseline approach to reason over uncertainty along just one path and

the vehicle fails to perform efficient motion between moving pedestrians. On the other hand, the

ES planners reason over uncertainty along multiple paths (Fig. 1.3) and often manage to find a

path where they do not have to slow down or stop. Moreover, it is possible that the hybrid A∗ path

might not be obtained at every time step within the limited computation time. As a result, the

system has to estimate the speed over the old path which was constructed considering the position

of pedestrians and belief over their intention at the previous time step. This leads to sub-optimal

decision making.

Another important observation is that both proposed planners outperformed the baseline

approach in the metric of travel time at least 91% of the times across all the different settings.

In densely crowded environments, moving to empty spaces nearer to the agent’s goal (instead of

staying idle and letting pedestrians pass) is an intuitively good strategy. This behavior is visible

from the trajectories executed by 2D-PRM and 2D-FMM (Fig. 5.4, Fig. 5.8 and Fig. 5.12).

They cover a wider area of the environment than 1D-A∗. However, doing so can sometimes also

result in the vehicle momentarily getting stuck behind a group of pedestrians that it did not reason
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Figure 5.1: 1D-A*

Figure 5.2: 2D-FMM

Figure 5.3: 2D-PRM

Figure 5.4: Trajectories executed by the holonomic vehicle using different planners across all 100
experiments in Scenario 1 with 400 pedestrians in the environment.
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Figure 5.5: 1D-A*

Figure 5.6: 2D-FMM

Figure 5.7: 2D-PRM

Figure 5.8: Trajectories executed by the holonomic vehicle using different planners across all 100
experiments in Scenario 2 with 400 pedestrians in the environment.
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Figure 5.9: 1D-A*

Figure 5.10: 2D-FMM

Figure 5.11: 2D-PRM

Figure 5.12: Trajectories executed by the holonomic vehicle using different planners across all 100
experiments in Scenario 3 with 400 pedestrians in the environment.
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over earlier. This happened in the few experiments where the proposed planners took more travel

time.

The extended space planners executed more SB actions on average than the baseline for

settings with high pedestrian density under all the scenarios. This is mainly due to the availability

of more choices of δθ for LS (36 choices) than ES (8 choices). The result with the least amount

of SB action is marked in bold for every setting in Table 5.1. For low pedestrian density, ES

planners took less or almost the same amount of SB actions as the LS planner. Densely populated

environments have less free space for the vehicle to navigate. In that situation, having more choices

for δθ allows the LS planner to find a path to move to open spaces that avoids collision with any

pedestrian. On the contrary, due to limited choices, the ES planner decides to execute the SB

action under the same situation. This is not a limitation directly due to extending the action

space; rather it is a limitation of the particular online tree search algorithm, DESPOT, which does

not work well for large or continuous action space problems. This demonstrates a need for online

POMDP solvers that can better solve large or continuous action space POMDPs which is an active

area of research [31].

We also performed experiments for a non-holonomic vehicle and compared the performance of

LS and ES planners under Scenario 1. The vehicle is modeled as a Dubin’s car with a max speed of

4 m/s. For LS, the hybrid A∗ path planner has 19 search actions from −45◦ to 45◦ at 5◦ intervals,

and the POMDP model is same as that for a holonomic vehicle. For ES, an effective roll-out policy

in the absence of static obstacles is to apply a steering angle β that modifies the vehicle’s heading

angle to follow a straight line path to the goal (subject to steering angle constraints). δRO can be

calculated from β using the vehicle dynamics. The straight line roll-out is not effective in scenarios

2 and 3 as it could lead to collisions with static obstacles. Under those scenarios, a possible effective

roll-out policy for a non-holonomic vehicle would be to execute a reactive controller over the path

generated using the Fast Marching Square method [6].

The experimental results with the non-holonomic vehicle are summarized in Table 5.2. The

ES planner (2D-NHV ) took less travel time on average than the LS planner (1D-A∗) across each
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Table 5.2: Non-Holonomic Vehicle Planner Performance Comparison.

1D-A∗ 2D-NHV
#Ped Time (in s) # SB action Time (in s) # Outperformed # SB action

100 53.62 ± 0.91 1.84 ± 0.11 36.54 ± 0.45 98 0.26 ± 0.04

200 72.54 ± 1.09 2.84 ± 0.14 43.79 ± 0.85 96 1.04 ± 0.09

300 95.43 ± 1.74 3.62 ± 0.15 62.37 ± 1.57 95 2.55 ± 0.12

400 110.41 ± 2.32 3.98 ± 0.15 81.07 ± 1.80 95 3.54 ± 0.13

This table shows the average travel time, the number of trajectories in which the proposed planner outper-
formed the baseline in terms of travel time, and the average number of SB actions over 100 trials under
Scenario 1. The standard error of the mean is indicated for averaged quantities. The best travel time and
the least amount of SB action in each row are bolded.

of the different settings, outperforming the baseline approach in this metric in at least 95% of the

simulations. The sub-optimality in decision making due to the decoupling of heading and speed

becomes more significant when the vehicle can travel at higher speeds. This is visible from the

larger reduction in the travel time ratio for the non-holonomic vehicle (max speed = 4 m/s) in

comparison to the holonomic vehicle (max speed = 2 m/s) across the different pedestrian densities

(Fig. 5.16). Since the number of choices of δθ for LS planner (19 choices) is not significantly more

than the number of choices for the ES planner (8 choices) for the non-holonomic vehicle, and due

to decoupling, the LS planner executes more SB actions than the ES planner on average across

all settings. The ES planner plans effectively and finds paths by covering a much wider space of

the environment without having to suddenly stop (Fig. 5.15).
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Figure 5.13: 1D-A*

Figure 5.14: 2D-NHV

Figure 5.15: Trajectories executed by the non-holonomic vehicle using different planners across all
100 experiments in Scenario 1 with 400 pedestrians in the environment.
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Figure 5.16: ES planners consistently outperform LS planners across each scenario, whether for
holonomic or non-holonomic agents.
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Chapter 6

CONCLUSION and FUTURE WORK

This work presents an intention-aware navigation system that uses an extended-space POMDP

planner to generate efficient navigation policies in the presence of uncertainty introduced by other

agents in the environment. In particular, for an autonomous vehicle navigating among pedestrians,

solving a POMDP that controls all degrees of freedom(i.e. speed and heading), instead of a select

few (i.e. speed over the Hybrid A∗ path) results in faster trajectories. This additional control

parameter enlarges the reachable state space and raises the need for practical roll-out policies from

these states to find the sparse positive reward during the online tree search. Our system uses

multi-query motion planning techniques like Fast Marching Methods or Probabilistic Roadmaps to

efficiently generate effective roll-out policies. Our results show that the proposed extended space

POMDP planners enable effective and safe autonomous driving in complex crowded environments.

They also indicated that the choice of the motion planning technique for offloading the task of

generating effective roll-out policies does not affect the planner’s performance significantly.

There are multiple directions to work on in the future. We plan to implement the proposed

extended space approach for non-holonomic vehicles in environments with static obstacles. Using

a reactive controller on a straight-line path to the goal doesn’t act as an effective roll-out policy for

non-holonomic vehicles in the presence of static obstacles since this path could lead to collisions

with static obstacles in the environment. The path obtained using PRM and FMM path may not

be executable for a non-holonomic vehicle due to kinematic constraints. A possible solution to this

issue is to use a Hamilton-Jacobi formulation which allows the generation of optimal trajectories

DocuSign Envelope ID: C1903AD7-001F-4CAD-9493-60F7934790BC



44

Figure 6.1: Goal-object association using heat maps and vision data

from any given point in the environment to the goal location while satisfying kinematic constraints

on the vehicle.

In this work and prior related work, it was assumed that the possible human goal locations are

known beforehand. However, this assumption will not be valid for most of the environments in real

life. Consequently, an autonomous agent must have the capability to identify possible human goal

locations in the environment. This agent can begin by observing and recording human trajectories

in the environment to generate a heat map of the time humans spent in different parts of the

room and to identify hotspots. It can then associate objects near these hotspots as potential goal

locations, e.g. a coffee machine, a door or a table (Fig. 6.1). When this agent is interacting in a

new environment, it can look for these objects to identify possible human goal locations.

Another possible extension is to use the proposed approach for planning in high dimensional

space, for e.g., a robotic manipulator. Prior work has used the POMDP formulation for problems

that involve human robot collaboration [38, 23]. Pellegrinelli et. al [38] used a POMDP framework

to reason over uncertainty in human’s intention while figuring out the best possible action for a

manipulator in a table clearing task (Fig. 6.2). This POMDP was solved using hindsight optimiza-

tion and requires offline computation of state-action value function for the manipulator. Since a
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Figure 6.2: An example of human robot collaboration for clearing a table. Image borrowed from
[38].

PRM is often used for motion planning of manipulators, our approach can use that sampled PRM

for both choosing an action in the environment and for executing an effective roll-out policy during

tree search, and can generate efficient motion for the manipulator.

Our work also demonstrated the need for online algorithms that can effectively solve large

or continuous action space POMDPs. This is an active area of research and is something we are

interested in working on.
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