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Abstract

Preference learning has become a very popular topic when coming into

solving a real world problem. State-of-the-art reinforcement learning algo-

rithms are able to find the optimal solution given an environment and a

target state, however, when human coordinators are involved in the task, a

question that the agent must be able to take into consideration is: Which

solution does the human participant prefer? This is a problem of great

significance, as many real world problems involve both the human and the

agent to solve, and understanding human’s preference towards the current

task is critical to success.

Many studies these days attempt to find a solution to this problem,

however, the true definition of “preference” still remains ambiguous. Al-

most all of the works out there lack a clear explanation of what “preference”

actually means in a real world context. At the high level, our study aims

to define human preference as the cause of the difference in understanding

of the environment between human and the agent. In other words, prefer-

ence can be viewed as an underlying factor that makes the human arrive

at a diverse reward function than the robot agent. We also prove that,

under some environmental settings, preference cannot exist, thus cannot

be learned.

On the other hand, we found that preference is never being evaluated

in any existing work. Human beings are not exactly the expert in making

the best decision, and they, in many possible ways, could have unreason-

able preferences. In this work, we recognize this problem and propose a

method in which the goal is to be able to find an equivalent of the hu-

man’s preference of a specific task on the agent’s reward function, which

serves the purpose of evaluating whether that preference is compatible with

the environment, and whether if it is safe to be applied. We started with

iii
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iv

defining a threshold reward value that represents the basic completion of

the task. Then, given a fully observed and controlled system and a target

state, we learn an optimal policy through reinforcement learning, which

has the highest expected rewards among all policies. These values will be

used later on as the metrics to evaluate the reward function learn from

a set of expert demonstrations through inverse reinforcement learning, in

which the human demonstration can be suboptimal with respect to the

current environment. In the end, our method should succeed in classifying

the underlying human preference as compatible or incompatible with the

environment.

We also propose a simple task environment in which the concept ex-

plained above could be tested in, but the actual implementation is yet

unavailable at the time of this defense. However, we believe that our pro-

posed definition and the evaluation method will still hold true in other

more complicated real task environments.

Keywords: Preference Definition, Preference Evaluation, Preference-based

Learning, Inverse Reinforcement Learning, Suboptimal Demonstrations Learn-

ing
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Chapter 1

Introduction

1.1 Motivation

Human preference plays an important role when coming into solving a col-

laboration task in the real world. Given a fully observed, single-agent task

environment, a state-of-the-art robot is able to learn the optimal policy

using a reinforcement learning algorithm. However, when a human col-

laborator is present, it will be critical for the robot agent to be able to

recognize the impact of the human’s preference on its policy, and update

its belief of the environment to be closer to the human’s belief when needed.

This will improve the efficiency of completing the task, as the robot is able

to provide help in accordance with the human’s expectation.

Many outstanding researchers recognized this problem, and aimed to

solve it with different methods, thus preference-based learning has become

a very popular field of study(5)(10)(14)(18)(7)(12)(16)(19). While some

algorithms use active querying to train a model based on human responses

(5)(10)(14)(18), others use pairwise trajectory comparison which assign

preference labels to demonstrated trajectories, or assign labels toward each

state in a trajectory(7)(10)(12)(14)(18)(16). However, these methods start

with an assumption that the human’s preference is always adaptable. Such

methods have some shortcomings: 1. trajectories, demonstrations and pref-

erence labels are very hard to obtain when having a very complicated task

domain, and 2. these methods requires the human participants to have

a certain level of expertise in the task, in order to provide reliable feed-

1
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CHAPTER 1. INTRODUCTION 2

back and labels. On the other hand, without preference ever being eval-

uated, these methods still able to achieve some level of success because

they act ahead to remove unsuccessful trajectories to prevent poor pref-

erences, which are the trajectories that have very low cumulative reward,

resulting in very undesirable consequences in reality if performed that way.

By eliminating these trajectories, these methods are able to handle poor

preferences since they do not offer the corresponding choice to the human.

If these trajectories are not eliminated, then evaluating preference becomes

very important. In our work, we propose a method that is able to evalu-

ate whether the human’s preference is actually compatible with the task

environment.

While some preference-based learning algorithms focus on learning only

the policy, others work on learning a reward function that can best describe

human behavior, as a result, inverse reinforcement learning plays an impor-

tant role in these methods(1)(2)(3)(4)(8)(11)(13)(15)(20)(21)(22). Inverse

reinforcement learning takes demonstrations, and works backwards to learn

a reward function. However, IRL has a significant shortcoming, that is, it

always assumes the demonstrations to be optimal when learning the reward

function. As a result, if given suboptimal demonstrations, the learned re-

ward function will also be impacted. Currently there are some works that

target the problem of suboptimal IRL(8)(15)(21), we mention suboptimal

learning here because, if a participant demonstrates a task with underly-

ing preferences that have impacts on his behaviors, then it is very likely

that the resulting demonstrations are suboptimal with respect to the task

environment. This problem is rarely mentioned in any preference-based

learning methods that either utilize IRL to learn or simply directly ap-

proximate reward functions. We state that, in the process of preference

learning, humans are always acting optimally in their understanding when

providing demonstrations, but the resulting demonstrations may or may

not be optimal with respect to the original task environment. We will

discuss into details about the situation where the approximated reward

function is suboptimal, and prove that, given each scenario, our method is

able to evaluate the learned reward functions, and arrive at a conclusion of

whether the reward function should be adapted by the agent.

Upon introducing preference-based learning and IRL, we realized pref-
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CHAPTER 1. INTRODUCTION 3

erence is never being thoroughly defined anywhere. In the context of real

world robotics problems, we state that there does not exist such a thing

as preference. Instead, we define preference in a new way that is more

closely related to real world robotics problems. That is, preference is inter-

preted as the difference in the belief of the environment between the agent

and the human participant. We conclude that, preference can only be in-

terpreted as a tiebreaker, which leads to non-identical reward functions

between the human and the agent. On top of this, we expand this defini-

tion further into details. We realize that, some work focuses on getting the

agent and human participant to arrive at the same level of comprehension

of the environment(17), by tutoring the human to reach the same level of

understanding of the environment as the agent. This method start with an

assumption that the human’s policy deviates from that of the agent, due to

the reason that the human does not have the same amount of knowledge of

the task environment as the agent. This assumption reminds us of another

important factor to consider when talking about human preferences, that

is, under the different scenarios: 1). humans have the full understanding of

the true reward function R, 2). Humans only have partial understanding of

the true reward function R, and 3). true reward function R is completely

unknown by the human, what role does preference play in each scenario?

Can preferences still exist for each case? We not only propose a new defi-

nition of preference, but also expand it into more details that will be able

to answer these questions with respect to each scenario.

1.2 Scope

We divide the scope of this project into five parts.

• Propose a new and thorough definition of preference.

• Model preference as a reward function R̂ learned from IRL.

• Design an evaluation algorithm and threshold values.

• Case by case evaluations.

• Propose a sample test environment

DocuSign Envelope ID: 001E4E1F-E1A7-4662-A3DE-03A773767F57



CHAPTER 1. INTRODUCTION 4

In this project, our goal is to provide a definition of preference as well

as a new way of learning and evaluating preference. Instead of designing an

algorithm or model that focuses on learning solely the human’s preference,

we focus on providing a distinct and thorough definition of preference before

we dive into actually learning the preference itself. On top of that, we also

introduce a pipeline that is able to learn and evaluate human preferences

on a given task. FIGURE

1.3 Overview

This thesis paper is organized as follows. In chapter 2, we divide all related

literature into a set of topics: Preference-based learning, Inverse reinforce-

ment learning, and Suboptimal demonstrations learning. We will discuss

their relationship with our project respectively. In chapter 3, we will dive

into demonstrating and explaining the details of our proposed definition

and evaluation methodology, including case by case evaluations. Chapter 4

will talk about the simple task environment we propose to build as a sam-

ple environment to test our methodology, and will provide general outlines

as well as explaining the details of the algorithms that we suggest using.

Finally, Chapter 5 will illustrate all the future works.
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Chapter 2

Related Work

2.1 Preference-based Learning

Preference-based learning is a sub field of learning where the goal is to focus

on learning the preference information. There is a great amount of work

focusing on learning the preferences using active querying(5)(10)(14)(18),

or through rankings (7)(10)(12)(14)(18)(16). Other preference-based rein-

forcement learning methods are studied and evaluated by Wirth et al.(19).

These methods focus on learning a reward function that best infer the hu-

man’s behavior. Some of them did so by constantly querying the human

throughout the task execution for feedback about the current trajectory

(5)(14)(18), or even more straightforward, asking the human about which

action they prefer at a given state(10). Others did so through labeling

trajectories and rankings, where the users are asked to rank a given set of

trajectories(7), or simply do a pairwise comparison(5)(12)(16)(18), and the

results are used to learn or update the reward functions.

However, these methods are usually hard to realize since 1). Informa-

tive queries are hard to design 2). Labeling trajectories requires too much

time, especially for more complicated tasks that have a very large state

space and set of possible trajectories 3). These methods require the human

participant to have a high level of expertise, such that they are able to

provide reliable feedback and labels. These algorithms also requires exper-

iment designers to be proactive and eliminate suboptimal trajectories to

prevent poor preferences.

5
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CHAPTER 2. RELATED WORK 6

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning is the field of learning, where the goal is

to learn a reward function given a set of policies, or expert demonstra-

tions (1)(2)(3)(4)(8)(11)(13)(15)(20)(21)(22). The state-of-the-art IRL al-

gorithm is able to resolve the ambiguity problem using maximum entropy,

where the expert demonstrations can be described with multiple different

reward functions(20)(22), we suggest using these methods for testing our

concepts. Existing works have combined inverse reinforcement learning

with preference learning(12)(16), where demonstrations are used to learn

a reward function through IRL, and the feedback from queries or ranked

trajectories are used to update the estimated reward functions.

Notably, IRL faces some challenges, as great demonstrations are gener-

ally hard to obtain from users, and since IRL always assumes the expert

demonstrations to be optimal when learning a reward function, it is not

very robust when the demonstrations are suboptimal. When IRL is used to

learn preference, suboptimal demonstrations are usually the case in which

we will be facing. Our work is related to IRL in that expert demonstrations

encodes preference information as they describe what the human wants to

do, and learning a reward function from these demonstrations should al-

low the agent to act in accordance to the person’s preference. In other

words, we state that the learned reward function, R̂, will encode human’s

preference towards performing a certain task.

2.3 Suboptimal Demonstrations Learning

As a sub-field problem of IRL, learning from suboptimal demonstrations

focuses on solving the problem where if the demonstrations are subopti-

mal, the resulting reward function will also be suboptimal. This is not a

very popular field of study. Existing approaches include learning from the

failed demonstration(8)(15), where they treat the failed demonstrations as

a negative bias. Instead of maximizing the similarity between the learned

policies to those of demonstrated, they work towards the opposite direc-

tion to avoid the failed demonstrations while matching the successful ones.

Other methods take into consideration the behavior noise when performing
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CHAPTER 2. RELATED WORK 7

IRL(21), where the reward function is estimated from the demonstrations,

but noisy demonstrations are marked with low reliability and ignored dur-

ing reward learning.

However, when it comes to learning preferences, ignoring suboptimal

or failed demonstrations is not exactly the desired way, as they still en-

code preference information and should still be considered and evaluated.

The present work differs from these methods in that, we consider expert

demonstrations to encode preference information, and perform IRL to learn

a reward function regardless of whether these demonstrations are optimal,

suboptimal, or failed. Because of the nature of IRL, we do not directly

utilize the learned reward function, instead, we propose taking an extra

step to evaluate the reward function, where we design an algorithm to infer

the tolerance of the underlying preferences.

2.4 Reward Function Disparity

Some works dedicate their effort in identifying the differences between re-

ward functions(6)(9), or, exploring algorithms in bringing human partic-

ipants to agree with the agent when non-identical reward functions exist

through explainable AI(17). These algorithms quantify the difference be-

tween reward functions, in which reward functions are evaluated via the dis-

tances from other reward functions(6), or visualize the differences through

plotting(9). In our work, we define preferences as the proof that non-

identical reward functions exist. More specifically, we state that, prefer-

ence acts as a tiebreaker in human’s decision making process, resulting in a

reward function R̂ that is different from the true reward function R. Unlike

other works, we do not focus on quantifying and measuring the difference

between reward functions, or focusing on bring human’s belief towards the

ground truth. Rather, we focus on evaluating the reward function learned

from IRL, before allowing the agents to update their belief towards that of

the human’s.
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Chapter 3

Methodology

Summary

Our work can be divided into two parts: 1. proposing a new and thorough

definition of preference 2. designing an reward function evaluation algo-

rithm. In this section, we will first dive into introducing and explaining the

definition of preference, and discuss its nature with respect to three scenar-

ios: R fully observable, R partially observable, and R unknown. We will

also show the cases where suboptimal reward functions may take place, and

this will lead to our next topic, where we focus on explaining the details of

the reward function evaluation algorithm.

3.1 Preference Definition

Consider a real world scenario, where researchers are setting up an environ-

ment and trying to hold user studies, by recruiting participant to perform

a designed task in the environment. In this case, there are only certain

information that are already known to the researchers: 1). the environ-

ment setup, including the true reward function R, 2). the demonstrations

collected your participant, and 3). the reward function R̂ learned from

the demonstrations using IRL. What remains unknown, is the process of

the participant arrives at this set of demonstrations, or, the his decision

making process that result in the set of demonstrations collected. When

coming into preference learning, this process is the most critical part, as it

8
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CHAPTER 3. METHODOLOGY 9

is where preference actually takes place and affects the human’s behavior.

Thus, we focus on modeling this underlying decision making process, and

then define preference on top of it.

3.1.1 Definition

In order to better illustrate our definition of preference, consider this real

world example, where you would like to purchase a cup of coffee, and there

are two choices: decaffeinated or caffeinated. If both decaffeinated and

caffeinated are $5, which one would you choose? What about the case

where decaffeinated is $4 and caffeinated is $5? In this case, how would

you make the decision?

We start by modeling the decision making process, in order to do that,

we must introduce a set of terms and their definitions, as illustrated below:

• R: R denotes the true reward function. For all IRL problems, there

always exists a true reward function R

• R̂: R̂ denotes to the reward function that models the preference, it

is learned through IRL from the set of expert demonstrations.

• R̄: R̄ is a self-designed, conceptual reward function that is derived

from the true reward function R. Representing the intermediate state

of the human’s decision making process.

• Tie: we define tie as the equivalence between reward values. Given

the example above, a tie will exist in the true reward function R, when

both decaffeinated and caffeinated has the same price. A tie will be

created in R̄, when decaffeinated and caffeinated have different price,

but the difference is neglected by the human, generating a conceptual

tie in R̄.

With all the important terms explained, we are able to introduce our

definition of preference. Mainly, to define what preference is in an IRL

problem, and under what situation can it exist and be learned. We state

that:
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CHAPTER 3. METHODOLOGY 10

1. If at any time, human agrees with the true reward function

R, then preference does not exist.

2. If preference can be defined, then either:

(a) The true reward function R contains ties.

(b) Human disagree with the true reward function R, and

the intermediate reward function R̄ is different from R

AND contains ties.

3. Preference can only be defined as a tie-breaker, that breaks

the ties between policies, resulting in a reward function R̂,

where R̄ =======⇒
Preference

R̂ 6= R

Note that, R̄ contains ties, that are either inherited from the true reward

function R, or logically created by the human due to disagreement with R.

Preference is defined as the tie-breaker, which breaks the ties in R̄, arriving

at the final reward function R̂, which is the reward function that is being

optimized by the human participant when performing the task, and also

the reward function we learned from the set of demonstrations, under the

assumption that IRL algorithm is at its best functionality. It is also worth

noting, where in any cases, if R̄ = R̂, we say that preference cannot be

defined. Since based on the definition provided above, if R̄ = R̂, then

either:

• R̄ contains no ties at all.

• Preference is not used to break the ties.

In order the simplify the problem, we assume that preference will always

be used to break ties if they exist. The first situation is just another way of

saying human is agreeing with the true reward function R, corresponding

to definition [1].

Given the definitions of preference, we are also interested in apply them

into different settings that are frequently seen in real world experimen-

tal designs, which are: R fully observable, R unknown, and R partially

observable. We will discuss them respectively in next three sections.
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CHAPTER 3. METHODOLOGY 11

3.1.2 R Fully Observable

Figure 3.1: Preference Under Fully Observable R

We first would like to talk about the ”R Fully Observable” scenario,

where in this setting, the true reward function R is given to human par-

ticipants prior to demonstrating. In other words, human participants and

the agent start at the same level, where they have the same amount of

knowledge of the task environment.

For this scenario, we are able to visualize the nature of preference in a

very clear way, as shown in Figure 3.1. The leftmost branch of the flowchart

corresponds to definition [2a], where the true reward function R contains

ties, R̄ inherits the ties from R, and preference breaks the ties, arriving

at the final reward function R̂. In this case, R̂ will always be optimal.

Consider the coffee example, when decaffeinated and caffeinated coffee have

the same price, there exist multiple policies that can optimize R. In this

case, getting decaffeinated or caffeinated will result in the same amount

of cumulative reward. Therefore, no matter which policy that preference

guides the human towards, the resulting estimated reward function R̂ will

always be optimal.

The middle branch corresponds to definition [2b], where new ties are
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CHAPTER 3. METHODOLOGY 12

created by the human due to disagreement with R. Consider when decaf-

feinated and caffeinated coffee has different prices, and the human disagrees

with R because he thinks that the $1 difference is neglectable, creating a

new tie between decaffeinated and caffeinated in R̄. It is very likely, in

this case, that the resulting estimation of hatR is suboptimal. Because it

is possible that the human prefer caffeinated over decaffeinated, while the

true reward function R can only be optimized if decaffeinated is selected.

This is the scenario where an evaluation on the estimated R̂ is required.

Finally, the rightmost branch corresponds to definition [1], where pref-

erence cannot be defined because the human agrees with R. In this case,

participant’s behavior is entirely encoded in R, and does not reflect any

preference at all.

3.1.3 R Unknown

In the setting where R is completely unobservable to the participants,

preference cannot be defined, and we will not be able to learn preference

through the estimated reward function R̂. This is because:

• Whether the true reward function R contains ties or not remains

unknown.

• Disagreement against unknown R is not reasonable.

With R fully unobservable, the human participant is acting upon spec-

ulated reward values for all states. For example, the participant might

guessed that the difference in reward value between decaffeinated and caf-

feinated coffee is 1, and creates a tie based on this conjecture. However, the

true reward function R might be suggesting that the difference between de-

caffeinated and caffeinated is actually 5. In this case, the participant might

not be able to neglect this difference any more, indicating the tie that was

created based on the conjecture is a false tie, and we cannot say that the

resulting R̂ is encoding the correct preference.

3.1.4 R Partially Observable

Unlike R fully observable and R unknown settings discusses above, where

we are able to draw clear boundaries between all possible situations, and
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CHAPTER 3. METHODOLOGY 13

Figure 3.2: Preference Under Partially Observable R

illustrate the nature of preference respectively. Under the R partially ob-

servable setting, there exists many possible situation that each comes with

great uncertainties. However, we are still able to categorize them roughly

into two parts, as shown in Figure 3.2.

We state that, given partially observable R, the participants will act

upon the conceptual reward function R̄, in which the reward values of the

unknown states are conjectured. The rightmost branch suggests that, if

there exists absolutely no information about what the true reward value

of an unknown state might be, then it can be treat the same as if R is

unknown, where we say that preference cannot be defined at all, since the

approximation of the reward values of the unknown states could deviate

from the ground truth tremendously, causing false ties to be created.

In the contrary, the left branches represents the scenario, where the

range in which the true reward value lies in is provided for the unknown

states. In this case, the participant is able to make more reliable approx-

imations about the unknown states, reducing the possibility of creating

false ties. To better illustrate, consider the example, where the true reward

value of getting the decaffeinated coffee is known as 4, and the participant
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only knows that the true reward value of getting the caffeinated coffee lies

within the range 5 ± 2. The participant is able to base his approxima-

tion on this range, and create more reliable ties. In this case, we say that

the preference can exist, and be encoded in R̂, but more study is required

to dive into nuance cases in order to determine whether R̂ is optimal or

suboptimal. Thus, we conclude that, if at any time, preference can exist

under R partially observable setting, evaluation is always required on the

estimated reward function R̂.

3.2 Reward Function Evaluation

Figure 3.3: Evaluation Pipeline

Our evaluation method can be divided into three parts. As shown in

Figure 3.3, we first focus on learning an optimal policy given the task en-

vironment, using a reinforcement learning algorithm. Meanwhile, inverse

reinforcement learning algorithm is being applied on a set of expert demon-

strations, and learns a reward function R̂ describing user’s behavior, and

is expected to encode preference information. The last part involves cal-

culating a threshold value α, which is used along with the threshold value

β, to evaluate the learned reward function. Terms that appeared in this

graph is explained below:
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• RL: Reinforcement Learning

• IRL: Inverse Reinforcement Learning

• M = S,A, T,R: Markov Decision Process, with S = state space, A =

action space, T = transition matrix, and R = true reward function.

• D: Set of expert demonstrations.

• π∗: Optimal policy given M .

• π̃: Least ideal policy given M . Policy that accomplishes the task

with the lowest expected cumulative reward.

• π̂: Optimal policy given M̂ .

• α, β: Evaluation thresholds.

3.2.1 Reinforcement Learning

Reinforcement learning is the method which learns an optimal policy that

maximizes the cumulative reward of a task environment, a simple model

is shown in Figure 3.4. Let S,A, T,R ∈ M denotes state space, actions,

transition probabilities, reward, and the markov decision process(MDP).

Reinforcement learning aims to solve M for an optimal solution π∗ =

[(s1, a1), (s2, a2), ...], which has the highest expected cumulative reward

E[R(π∗)].

Common reinforcement learning algorithms include Value iteration/Q-

learning, Policy iteration, etc. We will explain more details about the

RL algorithm we suggest using to build the test environment in the next

section.

Figure 3.4: RL
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3.2.2 Inverse Reinforcement Learning

To the contrary of traditional RL problems, which aims to learn policies

from reward functions, the goal of inverse reinforcement learning is to learn

a reward function from policies demonstrated by humans. For a traditional

IRL problem, we assume policies demonstrated by humans are optimal,

and the goal is to find a reward function that can best describe these

policies, as shown in Figure 3.5. In our evaluation algorithm, IRL is used

to estimate the reward function R̂ from a set of expert demonstrations

D, with the participant’s preference acts as the tie-breaker throughout the

demo process. Therefore, R̂ is expected to encode the underlying preference

information.

Figure 3.5: IRL

Current inverse reinforcement learning algorithms include apprentice-

ship learning(1), maximum margin planning(13), structured classification,

etc. In many cases, using these methods, a single set of demonstrations can

lead to multiple different reward functions that all are able to describe hu-

man behaviors. To solve this ambiguity problem, as introduced by Ziebart

et al.(22), an approach which employs the principle of maximum entropy

to choose a model whose distribution over paths is constrained only on the

feature counts and nothing else. Maximum Entropy IRL has become the

most widely used inverse reinforcement learning algorithm.

Built upon the Maximum Entropy IRL algorithm, Wulfmeier et al.(20)

introduces a method which combines neural networks with Maximum En-

tropy to solve IRL problems. Reward function is approximated with a deep

neural network architecture, with input as state features. The difference
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in state visitation frequency between the policy learned using the current

neural network and the user demonstrations is used as the loss to train the

neural network. We will dive deeper into explaining the actual MaxEnt

algorithm in the Chapter 4.

Deep MaxEnt IRL exceeds MaxEnt IRL in dealing with large-scale

IRL applications where more complex reward functions are required, more

specifically, Deep MaxEnt IRL can better handle nonlinear reward func-

tions that are composed of a larger amount of features, since MaxEnt IRL

relies on expressing reward function as a weighted linear combination of

hand selected features. It also exceeds other IRL algorithms in computa-

tional speed, which also provides better computational performance when

dealing with large state spaces and more complex reward function struc-

tures.

3.2.3 Baseline Threshold β

We introduce a brand new threshold measurement in our method, β, stands

for the baseline value of the expected cumulative reward of the current task

environment. In other words, it represents the baseline requirements on the

current task environment in which a policy can be adapted.

Given the definition of the terms provided above, optimal expected cu-

mulative reward value can be represented as E[R(π∗)], and the expected cu-

mulative reward value of the least ideal policy π̃ is represented as E[R(π̃)].

We define β as the ratio of these two expected cumulative reward values:

β =
E[R(π̃)]

E[R(π∗)]
(3.1)

This threshold value represents the satisfaction of the baseline require-

ment of a particular task given M , it is one of the threshold measurements

used to evaluate the learned reward function R̂, as R̂ must not only encode

the preferences, but also at least still satisfies the basic requirements on

top of that. β can also be a self-designed value, indicating a particular

requirement, or additional constraints.
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3.2.4 Preference Threshold α

On top of the baseline threshold β, we design another brand new threshold

value, α.

Based on the definitions of terms provided above, let the expected cu-

mulative reward value of the optimal policy π∗ represented by E[R(π∗)].

Meanwhile, given a set of expert demonstrations D = {ζ1, ζ2, ζ3, ...} with

each demonstration ζ composed of a set of state-action pairs, and also en-

codes human’s preferences. Let R̂ denote the reward function estimated

from D using the Deep MaxEnt IRL algorithm. Given that π̂ is the policy

optimizing R̂, which can be interpreted as the desired policy of the hu-

man participant, and has its expected cumulative reward value represented

by E[R(πhuman)]. We define α as the ratio of this value and the optimal

expected cumulative reward value:

α =
E[R(π̂)]

E[R(π∗)]
(3.2)

This threshold measurement can be interpreted as the preference-equivalent

threshold value, which is used to find where the policy learned from the

estimated reward function R̂ lies on the scale based on the true reward

function R. Along with the baseline threshold ratio β, we are able to de-

sign an integrated evaluation metric to determine whether the agent should

update its belief towards R̂ or stay the same.

3.3 Case by Case Evaluation

In order to better illustrate how this evaluation algorithm works, we would

like to do a case by case evaluation on a sample task environment.

Figure 3.6: Evaluation Sample Environment
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r(s, a) State s Action a Next State s
′

Coin value in s
′

Base Up/Down/Left/Right Any s
′

0 Any s Up/Down/Left/Right Base
-1 Any s Stay/INVALID s

′
== s

100 Any s Up/Down/Left/Right Terminal State

Table 3.1: Sample Environment R

Given: A gridworld environment modeled as a simple Markov Decision

Process M = {S,A, T,R}, as shown in Figure 3.6. And a set of expert

demonstrations D

• A: Action space {Up, Down, Left, Right, Stay}

• S: State space {s1, s2, ...}, where s = [x, y,#quarter,#dime,#nickle] ∈
S

• R: True reward function, with reward values shown in Table 3.1

• Terminal State: s = [Basex,Basey,#quarter,#dime,#nickle] where

sum(#quarter,#dime,#nickle) = 2

• D: A set of policies {s1 : a1, s2 : a2, ..., st : at}

• Outputs: R̂, π̂, α, β

From Figure 3.1 and Figure 3.2, we conclude that, evaluation on the

estimated reward function R̂ is required when it is suboptimal. In the next

sections, we are going to mainly focus on evaluating suboptimal R̂, since if

R̂ is optimal with respect to M , it is certainly going to be adaptable.

3.3.1 R̂ Adaptable

Given the environment above, based on the evaluation pipeline, we are able

to get the below information required by the evaluation algorithm:

• π∗ = {{s0 : Up, s1 : Down, s2 : Right, s3 : Left}, {s0 : Right, s1 :

Left, s2 : Up, s3 : Down}}

• π̃ = {s0 : Left, s1 : Right, s2 : Down, s3 : Up}
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• E[R(π∗)] = 50 + 100 - 0 = 150

• E[R(π̃)] = 15 + 100 - 0 = 115

Assume that, using IRL, the estimated reward function R̂ from D,

suggests the optimal policy π̂:

• π̂ = {s0 : Down, s1 : Up, s2 : Right, s3 : Left}

• E[R(π̂)] = 35 + 100 - 0 = 135

We are able to calculate α to be E[R(π̂)]
E[R(π∗)]

= 0.9 based on Equation 3.2,

and β to be E[R(π̃)]
E[R(π∗)]

= 0.77 based on Equation 3.1. We state that, since

β represents the baseline requirement, and β < α < 1. This indicates

the policy π̂ lies within the acceptable range. Thus the estimated reward

function R̂ is safe to be adapted.

Recall that we modeled the decision making process as the fundamental

to define preference in Section 3.1, to further prove that our definition is

correct, we would like to relate it with this example.

We start by identifying ties in the true reward function R. According

to Figure 3.6, we can see that there exists a tie between selecting the ”Up”

and action and the ”Right” action, since both actions have expected reward

values to be 25. As mentioned in Section 3.1, the intermediate reward

function R̄ may contains ties that are either inherited from R, or newly

created due to disagreement with R. By looking at policy π̂, we can see that

the participant chooses to go ”Down”, picking up the dime, before going to

”Right” or ”Up” for the quarter. Thus, we can say that, R̄ in inherits the

tie r(s, Up) == r(s, Right) from R, and at the same time, the participant

thinks that he can neglect the value difference between the dime and the

quarter, creating a new tie r(s,Down) == r(s, Up) == r(s, Right) in R̄.

Finally, preference comes in as the tie-breaker to break this tie, resulting in

the final policy π̂ that optimizes the reward function R̂, in which dime has

a higher reward value than quarters: r(s,Down) > r(s, Right) > r(s, Up).

3.3.2 R̂ Unadaptable

Given the same environment, the set of information we are able to obtain

is the same as the previous section:
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• π∗ = {{s0 : Up, s1 : Down, s2 : Right, s3 : Left}, {s0 : Right, s1 :

Left, s2 : Up, s3 : Down}}

• π̃ = {s0 : Left, s1 : Right, s2 : Down, s3 : Up}

• E[R(π∗)] = 50 + 100 - 0 = 150

• E[R(π̃)] = 15 + 100 - 0 = 115

What is different, is the optimal policy π̂, that optimizes the estimated

reward function R̂, learned from D. In this case, assume π̂ is:

• π̂ = {s0 : Down, s1 : Up, s2 : Stay, s3 : Stay}

• E[R(π̂)] = 10 - 2 = 8

We can see that, the policy suggested by the estimated reward function

R̂ only picks up one coin, resulting in α = E[R(π̂)]
E[R(π∗)]

= 0.0.053, based on

Equation 3.2. We state that, since β > α, indicating the policy π̂ resides

below the baseline, thus the estimated reward function R̂ should not be

adapted.

We again relates our preference definition with this example. Given the

same environment M3.6, as mentioned in the previous section, R contains

the tie r(s, Up) == r(s, Right). By looking at policy π̂, we can see that

the participant chooses to go ”Down”, picking up the dime, and then stay

until the end of the timestamp. In this case, R̄ contains the tie r(s, Up) ==

r(s, Right) inherited from R, and also a new tie created by the participant,

r(s,Down) == (100 + r(s, Right)) == (100 + r(s, Up)). Preference comes

in to break the tie, resulting in the final policy π̂ that optimizes the reward

function R̂, in which dime has a higher reward value than that of the

quarters and reaching the terminal state combined: r(s,Down) > (100 +

r(s, Right)) == (100 + r(s, Up)). This certainly does not look reasonable,

and is also suggested so by the evaluation algorithm, where the output of

the evaluation algorithm says that R̂ is not adaptable because α is below

the baseline threshold β. This proves that our preference definition and

evaluation algorithm both are correct.

DocuSign Envelope ID: 001E4E1F-E1A7-4662-A3DE-03A773767F57



Chapter 4

Experiment

Summary

In this section, we design a gridworld environment same as the one men-

tioned in Chapter 3. We would explain the sample environment that we

suggest others to implement in order to test our method. In general, we will

talk about environmental setup, dive deep into explaining the Q-learning

algorithm and the Deep MaxEnt IRL algorithm which we recommend us-

ing.

4.1 Environmental Setup

We formulate our problem as an application of a simple Markov Decision

Process(MDP) with deterministic rewards. We design a very simple grid-

world environment to test our methodology, as shown in 3.6. The general

problem formulation is:

• Input: M = {S,A, T,R}, D

• Output: α, β, R̂, π∗, π̂

We setup our environment following the guidelines below:

• The agent must start at the base, and must return to base in order

to move to another cell.

22
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• If not given a specific number of steps to act, the default task will

be to visit all cells once. Otherwise, if given n-steps to act, the task

would be to pick up n coins total.

Due to the setup that allows the robot agent to jump to different cells,

we must design our state vector to be able to remember all cells that it

has already traveled to. In this case, our state vector is represented as

s = (x, y, coin, [count1, count2, . . . ]) ∈ S, where each entry represents:

• x - x coordinate

• y - y coordinate

• coin - coin type in the current cell

• [count1, count2, ..] - an array of count for each type of coin that has

been collected by visiting a cell, with the array length equal to the

total number of unique coin types in the environment.

As a result of the unique design of the state vector, we have a very

large state space. Therefore, we decide not to define the entire state space,

and only populate our state space as we proceed with the task. Our ac-

tion space, represented be a set of integers {0, 1, 2, 3, 4}, with each number

denotes {Up,Down, Left, Right, Stay}. To reduce the complexity of the

environment, we set the transition noise to be 0, and assign reward values

based on the coin value at that cell, with details of R shown in Table 3.1.

For this simple example, we use only one expert demonstration T , com-

posed of a sequence of cells that the human participant has gone to. Then

generates the expert policy D, which is a set of state-action pairs, based

on this demonstrated trajectory T .

4.2 Q-Learning

As discussed in Section 3.2.1, there exists many algorithm for solving re-

inforcement learning problems. Due to the fact that it is very difficult to

define the entire state space given our special environmental setup, we do

not suggest using the standard value iteration algorithm to learn the opti-

mal policy. Q-learning does not require the complete state space to do the
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computation, and allows us to build up the q-table with only the states

that have been visited, thus best suits our environment.

Given at time t ∈ T , the current state is denoted as st and the current

action as at. Q values for all states are initialized to be 0, and is updated

with the Bellman equation at each time step:

Q(st, at) = (1− α) ∗Q(st, at) + α ∗ (rt + γ ∗maxaQ(st+1, a)) (4.1)

Where α denotes the learning rate, and γ denotes the discounted factor.

This equation is similar to a simple value iteration update, with the new

Q value calculated as the weighted average between the old Q value and

the future discounted reward. Detailed Q-Learning algorithm is shown in

Algorithm 1

Algorithm 1 Q-Learning

Input: M = {S,A, T,R}
Output: Q

Q← initialized to all 0 for each actiona

E ← episode

while E 6= 0 do

s← current state

while s 6= Terminal State do

if random.uniform(0, 1) less than ε then

a← random(A)

else

a← argmax(Q[s])

end if

s
′ ← T (s, a)

Q(s, a)← Bellman Equation 4.1

s← s
′

end while

end while

return Q

Note that the Q-learning algorithm is used to learn the optimal policy
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π∗, as well as within the Deep MaxEnt IRL to calculate the loss, as shown

in Algorithm 2 Line #4. The former uses the reward function R, and

the latter uses the neural network to approximate the reward values. The

resulted Q-table is used to find the deterministic optimal policy π∗, and

the intermediate policy, π which is used to calculate the state visitation

frequency and the loss for training the neural network.

Algorithm 2 Maximum Entropy Deep IRL

Input: µaD, f, S, A, T, γ

Output: optimal weights θ∗

1: θ1 = initialise weights()

Iterative model refinement

2: for n = 1→ N do

3: rn = nn forward(f, θn)

Solution of MDP with current reward

4: πn = Q-Learning(rn, S, A, T, γ)

5: E[µn] = propagate policy(πn, S, A, T )

Determine Maximum Entropy loss and gradients

6: LnD = log(πn) × µaD

7:
∂LnD
∂rn

= µD − E[µn]

Compute network gradients

8:
∂LnD
∂θnD

= nn backprop(f, θn,
∂LnD
∂rn

)

9: θn+1 = update weights(θn,
∂LnD
∂θnD

)

10: end for

4.3 Deep Maximum Entropy IRL

Based on the evaluation algorithm, we are estimating a reward function R̂

through IRL from expert demonstrations D. We state that, R̂ will encode

the participant’s preference for the given task, and the policy learned from

it, π̂, will be the policy that the human will perform given the underlying

preference. We suggest using the Deep MaxEnt IRL algorithm, as it not

only can resolve the ambiguity issue, but also is able to deal with more

complex non-linear reward functions than the general MaxEnt IRL algo-
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rithm. Algorithm 2 describes the method proposed by Wulfmeier et al.(20)

in details. Note that rn stands for reward values of all states, where each

value is the reward of a single state, obtained by using that state as the

input to forward propagate through the neural network.

4.3.1 Neural Network Structure

As proposed by Wulfmeier et al.(20), we suggest using a fully connected

neural network, the general structure of the neural network can be designed

as the one shown in Figure 4.1. The input to the neural network is the

state vector, in our case, given three types of coins, input vector will have

a dimension of 1× 6. This neural network has an input layer, two hidden

layers, and an output layer. However, the number of hidden layers and the

number of neurons per layer are not fixed values, tuning on these values are

required in order for the neural network to achieve the best performance.

We also suggest applying the RELU activation function to the outputs of

each layer other than the final output layer, adding non-linearity to the

estimated reward function.

Figure 4.1: Fully Connected Neural Network

4.3.2 State Visitation Frequency

Line #5 in Algorithm 2 calculates the state visitation frequency of policy

π, which is the optimal policy learned using Q-learning given the cur-

rent neural network as the approximated reward function, as suggested by

Wulfmeier et al.(20). Detailed policy propagation algorithm is illustrated
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in Algorithm 3. The mean squared error between the expected state visi-

tation frequency E[µn] and the expert state visitation frequency µD can be

used as the loss to train the neural network. Other loss functions such as

mean absolute error can also be applied instead, but tuning is required to

find the best loss function to use.

Algorithm 3 Policy Propagation

1: E1[µ(sstart)] = 1

2: for n = 1→ N do

3: Ei[µ(sgoal)] = 0

4: Ei+1[µ(s)] =
∑

s′ ,a T (s, a, s
′
) π(a|s′) Ei[µ(s

′
)]

5: end for

6: E[µ(s)] =
∑

i Ei[µ(s)]
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Chapter 5

Conclusions

In this work, we first introduce a definition for preference in the context

of real world IRL problem, where we done through modeling the human’s

decision making process while providing demonstrations, and then identify

the role of preference as a tie-breaker in this process. Upon introducing

this new definition, which connects preference to reward functions, we also

discussed the relationship between preference learning and suboptimal in-

verse reinforcement learning. We apply this definition into three settings

that are frequently applied to real world experiments: R Fully Known, R

Unknown, and R partially Known, and then identified all the cases where

the estimated reward function R̂ is optimal, emphasizing the importance

of evaluating R̂. From there, we introduce an algorithm that is able to

evaluate R̂, by mapping π̂ onto the true reward function R. Our work is

the first that provides a thorough definition of preference in IRL problems,

and puts forward a preliminary method that helps researchers to deal with

human preference in a more cautious and practical way.

28
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Chapter 6

Future Work

6.1 R Partially Unknown

As mentioned in Section 3.1.4, we are unable to categorize R partially

unknown into more precise cases, as there exists great uncertainties in R̂

under this setting. In the future, we plan to explore more nuance cases,

and strive to find edge cases where our definition of preference might not

hold true.

6.2 Environmental Design and Real World

Application

We proposed a sample environment in Chapter 4, for the actual implemen-

tation still remains to be done. In order to make preference shown in a

more explicit way, we hand coded a feature to each cell. Current experi-

mental design result in a state vector with very large dimensionality, and

also result in a very large state space, which in turn increases the com-

putational cost. What we would first like to accomplish in the future is

to try implementing the sample environment using the design proposed in

Chapter 4, and on top of that, adjust the setup to reduce the complexity

in implementation.

On the other hand, we choose to design a very simple environment and

task to test our methodology. This environment is rarely seen in reality.

In our environment, we hand design the reward to be related only to the

29
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feature we assigned to each cell, which is not realistic, as in many real world

problems, the reward functions are generally more complex. In the future,

we would like to apply this method to more real world problems.

6.3 Threshold Design

In the future, we are also interested in exploring another way of defining

our threshold values, especially for β. Currently it is set to be the ratio of

the optimal reward value and the lowest reward value, restricting the policy

π̂ to complete certain task, but also puts many pressures on researchers on

their abilities in providing very well-defined environments, and termination

states that match their expectations on all the baseline requirements. We

are thinking about defining it as a scalar value, which lets it stand on its

own, and examining whether if it can add more constrains on what kinds

of policies are acceptable. We think that this might add more flexibility

when applying to problems.
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